Skip to main content

Effect of Conservation Agriculture on Energy Consumption and Carbon Emission

  • Chapter
  • First Online:
Agriculture, Livestock Production and Aquaculture

Abstract

Conventional agriculture systems with an increased cost of cultivation reduce partial factor productivity, and deterioration of energy, soil, water, and environmental quality threatens food security and aggravates climate change. A holistic package of reduced tillage, residue recycling, crop diversification, and best-bet agronomic practices offered by the conservation agriculture (CA) system seems promising in achieving food security and developing climate resilience in the food production system. This study highlights the overview of CA system, global and national status of CA, opportunities and constraints in adoption of CA, resource efficiencies, particularly energy budgeting in CA, the scope of climate resilience and greenhouse gas emissions (GHGs) mitigation through CA adoption, indices of soil health and carbon sequestration potential under CA systems, and prospects and critical areas of research for scaling of CA systems. Synergies and trade-offs need to be precisely taken care of for need-based site-specific redesigning of CA systems for assured farmer’s income, ecological services, and sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Kassam, T. Friedrich & R. Derpsch (2018): Global spread of Conservation Agriculture, International Journal of Environmental Studies, 1–24.

    Google Scholar 

  • Adak T, Kumar G, Chakravarty NVK, Katiyar RK, Deshmukh PS, Joshi HC. Biomass and biomass water-use efficiency in oilseed crop (Brassica juncea L.) under semi-arid microenvironments. Biomass Bioenerg 2013; 51:154–62.

    Article  CAS  Google Scholar 

  • Alam M, Mishra A, Singh K, Singh SK, David A (2014) Response of sulphur and FYM on soil physico-chemical properties andgrowth, yield and quality of mustard (Brassica nigra L.). J Agric Phys 14:156–160.

    Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sust 1:309–340

    Google Scholar 

  • Aryal JP, Sapkota TB, Jat ML, Bishnoi DK (2015) On-farm economic and environmental impact of zero-tillage wheat: a case of northwest India. ExpAgric 51:1–16. https://doi.org/10.1017/S001447971400012X

    Google Scholar 

  • Behera, U. K., Sharma, A. R. &Mahapatra, I. C. (2007). Crop diversification for efficient resource management in India: Problems, Prospects and Policy. Journal of Sustainable Agriculture, 30(3), 97–217.

    Article  Google Scholar 

  • Bhan, S. and Behera, U. K. (2014) Conservation agriculture in India – Problems, prospects and policy issues. International Soil and Water Conservation Research, 2(4): 1–12.

    Article  Google Scholar 

  • Bhattacharyya R, Das TK, Sudhishri S, Dudwal B, Sharma AR, Bhatia A, Singh G. Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice-wheat cropping system in the western Indo-Gangetic Plains. Eur J Agron 2015;70:11–21

    Article  Google Scholar 

  • Burney, J. A., Davis, S. J. and Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. PNAS, 107: 12052–12057.

    Article  CAS  Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Inter Soil Water Conserv Res 3(2):119–129

    Article  Google Scholar 

  • Carter MR, Gregorich EG, Angers DA, Beare MH, Sparling GP, Wardle DA, Voroney RP (1999) Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Canadian Journal of Soil Science 79: 507–520.

    Article  Google Scholar 

  • Chaudhari SK, Bardhan G, Kumar P, Singh R, Mishra AK, Rai P, Singh K, Sharma DK (2015) Short-term tillage and residue management impact on physical properties of a reclaimed sodic soil. J Indian Soc Soil Sci 63(1):30–38

    Article  Google Scholar 

  • Chauhan, B.S., Singh, R.G. and Mahajan, G. 2012a. Ecology and management of weeds underconservation agriculture: A review. Crop Prot., 38:57–65. DOI: https://doi.org/10.1016/j.cropro.2012.03.010

    Article  Google Scholar 

  • Chauhan, B.S., Mahajan, G., Sardana, V., Timsina, J., Jat, M.L., 2012b. Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. Adv. Agron. 117, 315–369

    Article  CAS  Google Scholar 

  • Choudhary, K. M., H. S. Jat, D.P. Nandal, D.K. Bishnoi, J.M. Sutaliya, M. Choudhary, et al., (2018). Evaluating alternatives to rice-wheat system in western Indo-Gangetic Plains: crop yields, water productivity and economic profitability. Field Crop. Res. 218. 1e10.

    Google Scholar 

  • Choudhury, B.U., Fiyaz, A.R., Mohapatra, K.P., Ngachan, S., 2016. Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of north-eastern Himalayan region of India. Land Degrad. Dev. 27, 1163e1174. https://doi.org/10.1002/ldr.2338

    Article  Google Scholar 

  • Corsi, S., Friedrich, T., Kassam, A., Pisante, M. & Joao De Moraes, S. (2012). Soil organic carbon accumulation and greenhouse gas emission reductions from Conservation Agriculture: A literature review. Integrated Crop Management, 16, 1–89.

    Google Scholar 

  • Das, A., Layek, J., Yadav, G.S., Babu, S., Sarkar, D., Meena, R.S., Lal, R., 2018. Managing nitrogen in small landholder hill farms of North Eastern Indian Himalayas. In: Lal, Rattan, Stewart, B.A. (Eds.), Soil Nitrogen Uses and Environmental Impacts Series: Advances in Soil Science, pp. 257–282

    Google Scholar 

  • Deng, J., Ni, H., Zhang, Z., Usman, S., Yang, X., Shen, Y., & Li, Y. (2021). Designing productive, energy-efficient, and environmentally friendly production systems by replacing fallow period with annual forage cultivation on the Loess Plateau of China. Journal of Cleaner Production, 128660.

    Google Scholar 

  • Derpsch, R.1998, Historical review of no-tillage cultivation of crops, Proceedings of the 1st JIRCAS Seminar on Soybean Research on No-Tillage Culture & Future Research Needs, 1- 18 March 5-6, 1998, Iguassu Falls: Brazil. Working Report No. 13, JIRCAS

    Google Scholar 

  • Dick RP (1992) A Review - Long-Term Effects of Agricultural Systems on Soil Biochemical and Microbial Parameters. Agriculture Ecosystem and Environment 40: 25-36.

    Article  CAS  Google Scholar 

  • Dong W, Hu C, Chen S, Zhang Y (2009) Tillage and residue management effects on soil carbon and CO2 emission in wheat– corn double cropping system. Nutrient Cycling in Agro-ecosystem 83: 27–37.

    Article  CAS  Google Scholar 

  • Du Preez, CC, Steyn JT, Kotze E (2001) Long-term effects of wheat residue management on some fertility indicators of a semiarid Plinthosol. Soil Tillage Research 63: 25-33.

    Article  Google Scholar 

  • Edralin, D.A., Sigua, G.C., Reyes, M.R. et al. (2017). Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia. Agron. Sustain. Dev. 37, 52. https://doi.org/10.1007/s13593-017-0461-7

    Article  Google Scholar 

  • Erenstein, O. & Laxmi, V. (2008). Zero tillage impacts in India’s rice-wheat systems: A review. Soil & Tillage Research, 100, 1–14.

    Article  Google Scholar 

  • FAO (2008) Investing in sustainable crop intensification: a farmer discovery process going to scale in Barkina Faso. Integrated Crop Management. Volume 7. Rome. ISBN 978–92–5-106323-1

    Google Scholar 

  • FAO (2011) Conservation Agriculture: Principles, Sustainable Land Management and Ecosystem Services. Food and Agriculture Organization, Rome, 2011, 1–4. http://www.fao.org/ag/ca/CAPublications/CA_Teramo_Kassam_Friedrich.pdf

  • FAO-AQUASTAT (2014), CA Adoption Worldwide, website. http://www.fao.org/ag/ca/6c.html.

  • Farooq, M. and Siddique, K.H.M. (Eds), 2014, Conservation Agriculture (Switzerland: Springer International).

    Google Scholar 

  • Franzluebbers AJ, Hons FM (1996). Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Tillage Research 39(3):229–239.

    Article  Google Scholar 

  • Friedrich T, Derpsch R, Kassam AH (2012) Global overview of the spread of conservation agriculture. Field Actions Sci Rep 6:1–7

    Google Scholar 

  • Gathala, M.K., Laing, A.M., Tiwari, T.P., Timsina, J., Islam, S., Bhattacharya, P.M., Dhar, T., Ghosh, A., Sinha, A.K., Chowdhury, A.K., Hossain, S., Hossain, I., Molla, S., Rashid, M., Kumar, S., Kumar, R., Dutta, S.K., Srivastwa, P.K., Chaudhary, B., Jha, S. K., Ghimire, P., Bastola, B., Chaubey, R.K., Kumar, U., G’erard, B. (2020). Energyefficient, sustainable crop production practices benefit smallholder farmers and the environment across three countries in the Eastern Gangetic Plains, South Asia. J. Clean. Prod. 246, 118982

    Article  Google Scholar 

  • Ghosh, B.N., Dogra, P., Sharma, N.K., Bhattacharyya, R., Mishra, P.K., 2015. Conservation agriculture impact for soil conservation in maize-wheat cropping system in the Indian sub-Himalayas. Int. Soil Water Conserv. Res. 3 (2), 112e118

    Article  Google Scholar 

  • Govaerts B, Mezzalama M, Unno Y, Sayre KD, Luna-Guido M, Vanherck K, Dendooven L, Deckers J (2007) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology 37: 18–30.

    Article  Google Scholar 

  • Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre KD, Dixon J, Dendooven L (2009) Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Crit Rev Plant Sci 28(3):97–122.

    Article  CAS  Google Scholar 

  • Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan SK, Fagodiya RK, Dubey R, Pathak H (2016) Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic Plains: through tillage, irrigation and fertilizer management. AgricEcosyst Environ 230:1–9

    Article  CAS  Google Scholar 

  • Haggblade S, Tembo G (2003) Conservation farming in Zambia EPTD. Discussion Paper No. 108 International Food Policy Research Institute, Washington

    Google Scholar 

  • Hobbs RP, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Phil Trans R Soc B 363:543–555.

    Article  Google Scholar 

  • Hobbs, P. R., & Govaerts, B. (2010). How conservation agriculture can contribute to buffering climate change. In M. P. Reynolds (Ed.), Climate Change and Crop Production (pp. 177–199). CAB International.

    Google Scholar 

  • Hota R, Jena AK, Nmna KL (2014) Effect of inorganic and organic amendments on yield of cocoyam (Colocasiaesculenta), and on soil properties. World Journal of Agricultural Research 2(2):70–81.

    Article  Google Scholar 

  • Hungria M, Franchini JC, Junior OB, Kaschuk G, Souza RA (2009) Soil microbial activity and crop sustainability in a longterm experiment with three soil-tillage and two crop-rotation systems. Applied Soil Ecology 42:288–296.

    Article  Google Scholar 

  • Jat ML, Malik RK, Saharawat YS, Gupta R, Bhag M, Raj Paroda (2012) Proceedings of Regional Dialogue on Conservation Agriculture in South Asia, New Delhi, India 32.

    Google Scholar 

  • Jat RK, Sapkota TB, Singh RG, Jat ML, Kumar M, Gupta RK (2014) Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: yield trends and economic profitability. Field Crops Res 164:199–210

    Article  Google Scholar 

  • Jat, S.L., Parihar, C.M., Singh, A.K., Kumar, B., Choudhary, M., Nayak, H.S., Parihar, M.D., Parihar, N. and Meena, B.R., 2019. Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options. Science of the Total Environment, 664, pp.659–668.

    Google Scholar 

  • Jat HS, Kumar V, Datta A, Madhu D, Choudhary M, Suresh Y-S, Tanuja KK, Andrew P, McDonald J, Jat ML, Sharma PC (2020) Designing profitable resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-76035-z

  • Kassam AH, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability 7(4):1–29.

    Article  Google Scholar 

  • Kassam AH, Friedrich T, Derpsch R, Kienzle J (2015) Overview of the worldwide spread of conservation agriculture. Field Actions Sci Rep 8. https://journals.openedition.org/factsreports/3966

  • Kassam, A.H., Mkomwa, S. and Friedrich, T. (Eds.), 2017, Conservation Agriculture for Africa (Wallingford: CABI).

    Google Scholar 

  • Kodzwa JJ, Gotosa J, Nyamangara J (2020) Mulching is the most important of the three conservation agriculture principles in increasing crop yield in the short term, under sub humid tropical conditions in Zimbabwe. Soil and Tillage Research: 197.

    Google Scholar 

  • Kumar R, Mishra JS, Rao KK, Bhatt BP, Hazra KK, Hans H, Mondal S (2019) Sustainable intensification of rice fallows of eastern India with suitable winter crop and appropriate crop establishment technique. Environ SciPollut Res 26:29409–29423. https://doi.org/10.1007/s11356-019-06063-4

  • Kumar R, Mishra JS, Rao KK, Mondal S, Hazra KK, Choudhary JS, Hans H, Bhatt BP (2020) Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-020-67973-9

    CAS  Google Scholar 

  • Kumar, P., Chaudhari, S.K., Singh, A., Singh, R., Mishra, A.K., Singh, K., Sharma, D.K. (2021a)Effect of tillage and residue management in rice-wheat system. Indian Journal of Agricultural Sciences 91 (2): 283–286

    Article  CAS  Google Scholar 

  • Kumar, R., Sarkar, B., Bhatt, B.P., Mali, S.S., Mondal, S., Mishra, J.S., Jat, R.K., Meena, R.S., Anurag, A.P. and Raman, R.K. (2021b). Comparative assessment of energy flow, carbon auditing and eco-efficiency of diverse tillage systems for cleaner and sustainable crop production in eastern India. Journal of Cleaner Production, 293, p.126162.

    Google Scholar 

  • Lal, R. (2013a). Climate-resilient agriculture and soil Organic Carbon. Indian Journal of Agronomy, 58(4), 440–450.

    CAS  Google Scholar 

  • Lal, R. (2013b). Enhancing ecosystem services with no-till. Renewable Agriculture and Food System, 28, 102–114.

    Article  Google Scholar 

  • Lal, R., 2015. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 70 (3), 55Ae62A

    Article  Google Scholar 

  • Lamourdia, T. and Meshack, M. (2009). Scaling-up Conservation Agriculture in Africa: Strategy and Approaches. Addis Ababa: Food and Agriculture Organization of the United Nations, FAO Sub-regional Office for Eastern Africa.

    Google Scholar 

  • Li L, Huang, Zhang R, Bill B, Guangdi L, Kwong YC (2011) Benefits of conservation agriculture on soil and water conservation and its progress in China. Agricultural Sciences in China 10(6):850–859.

    Article  Google Scholar 

  • Liu M, Han G, Zhang Q (2019) Effects of Soil Aggregate Stability on Soil Organic Carbon and Nitrogen under Land Use Change in an Erodible Region in Southwest China. International Journal of Environmental Research and Public Health 16(20): 3809

    Article  CAS  Google Scholar 

  • Lopes, A. R., Faria, C., Prieto-Fernández, A., Trasar, C. C., Manaia, C. M. and Nunes, O. C. (2011). Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biology & Biochemistry, 43: 115–125.

    Article  CAS  Google Scholar 

  • Meena, MS and Singh, K.M. (2013): Conservation Agriculture: Innovations, Constraints and Strategies for Adoption. https://mpra.ub.uni-muenchen.de/49380/

    Google Scholar 

  • Mishra AK, Shinjo H, Jat HS, Jat ML, Jat RK, Funakawa S. Farmers perspective on adaptation and up-scaling of conservation agriculture based management practices in Indo-Gangetic plains of India. In: IntConf Cons Agri Sustain Land Use; 2016. p. 57.

    Google Scholar 

  • Mishra, A. K., S. K. Chaudhari, P. Kumar, K. Singh, P. Rai & D. K. Sharma. 2014. Consequences of straw burning on different carbon fractions and nutrient dynamics. Indian Farming 64: 11–12.

    Google Scholar 

  • Mishra, A. K, Mahinda, A. J., Shinjo, H., Jat, M. L., Singh, A., Funakawa S (2018) Role of Conservation Agriculture in Mitigating Soil Salinity in Indo-Gangetic Plains of India. Goyal, M.R., Gupta, S.K., & Singh, A. (Eds.). (2018). Engineering Practices for Management of Soil Salinity: Agricultural, Physiological, and Adaptive Approaches (1st ed.). Apple Academic Press. https://doi.org/10.1201/9781351171083

  • Mishra, A. K., Arya, R., Tyagi, R., Grover, D., Mishra, J., Vimal, S. R., Mishra, S., Sharma, S (2021). Non-Judicious Use of Pesticides Indicating Potential Threat to Sustainable Agriculture. Singh V. K.,Singh R., Lichtfouse, E (Eds.). (2021). Emerging Contaminants in Agriculture in Sustainable Agriculture Reviews 50. https://doi.org/10.1007/978-3-030-63249-6

  • Mobtaker, H. G., Keyhani, A., Mohammadi, A., Rafiee, S., &Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems & Environment, 137(3–4), 367–372. doi:https://doi.org/10.1016/j.agee.2010.03.011

    Article  Google Scholar 

  • Nandan, R., Poonia, S.P., Singh, S.S., Nath, C.P., Kumar, V., Malik, R.K., McDonald, A. and Hazra, K.K., 2021. Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region. Environmental Science and Pollution Research, 28(1), pp.246–261.

    Google Scholar 

  • Nandan, R., Singh, S. S., Kumar, V., Singh, V., Hazra, K. K., Nath, C. P., R. K. Malik, S. P. Poonia& Solanki, C. H. (2018). Crop establishment with conservation tillage and crop residue retention in rice-based cropping systems of Eastern India: yield advantage and economic benefit. Paddy and Water Environment, 16(3), 477–492.

    Article  Google Scholar 

  • Nisar, S., Benbi, D. K., and Toor, A. S. (2021). Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains. Energy, 229, 120661.

    Article  CAS  Google Scholar 

  • Ozkan B, Akcaoz H, Fert C. Energy input-output analysis in Turkish agriculture. Renew Energy 2004; 29:39e51

    Google Scholar 

  • Palm C, Blanco-Canqui H, DeClerck F, Gatere L (2014) Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment 187: 87–105.

    Article  Google Scholar 

  • Parihar, C.M., Jat, S.L., Singh, A.K., Majumdar, K., Jat, M.L., Saharawat, Y.S., Pradhan, S., Kuri, B.R., 2017. Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem. Energy 2017 119, 245–256.

    Article  Google Scholar 

  • Pimentel, D. and Edwards, C.A. (1982). Pesticide and Ecosystem. Bioscience, 32: 595-600.

    Article  CAS  Google Scholar 

  • Pokhrel, A., &Soni, P. (2019). Sustainability assessment of crop production in accord with energy, environment and economic performances in Nepal. Environmental Sustainability, 2(4), 343–353.

    Article  CAS  Google Scholar 

  • Pratibha, G., Srinivas, I., Rao, K.V., Raju, B.M.K., Shanker, A.K., Jha, A., Kumar, M.U., Rao, K.S. and Reddy, K.S., 2019. Identification of environment friendly tillage implement as a strategy for energy efficiency and mitigation of climate change in semi-arid rainfed agro ecosystems. Journal of Cleaner Production, 214, pp.524–535.

    Google Scholar 

  • Rahman MH, Okubo A, Sugiyama S, Mayland HF (2008) Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Tillage Research 101(1):10–19.

    Article  Google Scholar 

  • Roldan A, Salinas-Garcia JR, Alguacil MM, Caravaca F (2007) Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops. Soil Tillage Research 93(2):273–282.

    Article  Google Scholar 

  • Saad AA, Das TK, Rana DS, Sharma AR, Bhattacharyya R, Lal K (2016) Energy auditing of a maize–wheat–greengram cropping system under conventional and conservation agriculture in irrigated northwestern Indo-Gangetic Plains. Energy 116:293–305

    Article  Google Scholar 

  • Sapkota TB, Jat ML, Aryal JP, Jat RK, Khatri-Chhetri A (2015) Climate change adaptation greenhouse gas mitigation and economic profitability of conservation agriculture: Some examples from cereal systems of Indo-Gangetic Plains. Journal of Integrative Agriculture 14(8): 1524–1533. https://doi.org/10.1016/S2095-3119(15)61093-0

  • Shahbaz M, Van Hoang TH, Mahalik MK, Roubaud D (2017) Energy consumption, financial development and economic growth in India: new evidence from a nonlinear and asymmetric analysis. Energy Econ 63:199–212

    Article  Google Scholar 

  • Silva AD, Babujia LC, Franchini JC, Souza RA (2010) Microbial biomass under various soil and crop management systems in short and long-term experiments in Brazil. Field Crop Research 119: 20–26.

    Article  Google Scholar 

  • Sims, B., Corsi, S., Gbehounou, G., Kienzle, J., Taguchi,M.I. and Friedrich, T. 2018. Sustainable weed management for conservation agriculture: options for smallholder farmers. Agric., 8(0): 1–20.

    Google Scholar 

  • Singh G, Marwaha TS, Kumar D (2009) Effect of resource conserving techniques on soil microbiological parameters under long-term maize (Zea mays)-wheat (Triticum aestivum) crop rotation. Indian Journal of Agricultural Sciences 79(2):94–100.

    CAS  Google Scholar 

  • Singh RK, Bohra JS, Nath T, Singh Y, Singh K. Integrated assessment of diversification of rice-wheat cropping system in Indo-Gangetic plain. Arch Agron Soil Sci 2011;57:489–506.

    Article  Google Scholar 

  • Singh RK, Kumar DP, Singh P, Solanki MK, Srivastava S, Kashyap PL, Kumar S, Srivastava AK, Singhal PK, Arora DK (2014) Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regulation 73: 91–101.

    Article  CAS  Google Scholar 

  • Singh, S., Singh, R., Mishra, A.K., Updhayay, S., Singh, H., Rahgubanshi, A.S. (2018) Ecological perspectives of crop residue retention under the conservation agriculture systems. Trop Ecol 59 (4):589–604.

    CAS  Google Scholar 

  • Soni, P., Sinha, R., Perret, S., 2018. Energy use and efficiency in selected rice-based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Rep. 4, 554–564.

    Article  Google Scholar 

  • Spedding TA, Hamel C, Mehuys GR, Madramootoo CA (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry 36: 499–512.

    Article  CAS  Google Scholar 

  • Srivastava K, Jat H, Meena M, Choudhary M, Mishra A, Chaudhari SK (2016) Long term impact of different cropping systems on soil quality under silty loam soils of Indo-Gangetic plains of India. J Nat ApplSci 8(2):584–587. https://doi.org/10.31018/jans.v8i2.841

    Google Scholar 

  • Thierfelder C, Matemba-Mutasa R, Rusinamhodzi L (2015) Yield response of maize (Zea mays L.) to conservation agriculture cropping system in Southern Africa. Soil Tillage Res 146:230–242.

    Article  Google Scholar 

  • Tuti MD, Prakash V, Pandey BM, Bhattacharyya R, Mahanta D, Bisht JK, Kumar M, Mina BL, Kumar N, Bhatt JC, Srivastva AK (2012) Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas. Energy 45(1):986–993

    Article  Google Scholar 

  • Vilma, N., Egidijus, S., Kristina, L., Aida, A., Sidona, B., Zita, K., 2018. The influence of bio preparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage. Sci. Total Environ. 626, 1402e1413. https://doi.org/10.1016/j.scitotenv.2018.01.190.

    Google Scholar 

  • Vivek, Naresh, RK, Tomar, S.K., Kumar, S., Mahajan, N.C. and Shivani. 2019. Weed and water management strategies on the adaptive capacity of rice-wheat system to alleviate weed and moisture stresses in conservation agriculture: A review. Int.J. Chem. Stud., 7(1): 1319–34

    Google Scholar 

  • West, T. O. & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation. Soil Science Society of America Journal, 66, 1930–1946.

    Article  CAS  Google Scholar 

  • Yadav, G.S., Anup, D., Lal, R., Subhash, B., Meena, R.S., Poulami, S., Singh, R., Mrinoy, D., 2018. Energy budget and carbon footprint in a no-till and mulch based rice- mustard cropping system. J. Clean. Prod. 191, 144e157. https://doi.org/10.1016/j.jclepro.2018.04.173

  • Yan, X., Ohara, T. & Akimoto H. (2003) Development of region- specific emission factors and estimation of methane from rice fields in the East, South east and South Asian countries. Global Change Biology, 9, 237–254.

    Article  Google Scholar 

  • Zhang X, Xin X, Zhu A, Yang W, Zhang J, Ding S (2018) Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Tillage Research 178:99–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohi R. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.K. et al. (2022). Effect of Conservation Agriculture on Energy Consumption and Carbon Emission. In: Kumar, A., Kumar, P., Singh, S.S., Trisasongko, B.H., Rani, M. (eds) Agriculture, Livestock Production and Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-93262-6_6

Download citation

Publish with us

Policies and ethics