Skip to main content

Revolutionizing Crops and Soil Resources’ Resilience to Climate Change: A Case for Best-Fit Agronomic Practices in Low and High Input Systems

  • Chapter
  • First Online:
Agriculture, Livestock Production and Aquaculture

Abstract

Climate change is the current and future threat to sustainable crop production and soil resilience in rain-fed agricultural systems. The high climatic variation, especially rainfall and temperature, has rendered agricultural productivity a high risk venture. Practices and technologies that abate the impact of climate change on agricultural production systems are thus imperative. There are several empirical studies of best-fit agronomic practices that have shown massive potential in curbing the devastating effects of climate change. However, these studies are isolated and do not clearly bring out how various agronomic practices cushion farmers against climate change. Consequently, little is known on how best-fit agronomic practices may be tailor-made to reduce and/or eliminate the impact of climate change in crop production systems. The aim of this chapter is thus to document and contextualize how various agronomic (herein referred to as best-fit) practices tackle climate change. It also looks at the policy and legal framework that strengthen the capacity of the practices. From the detailed literature, best-fit agronomic practices include: integrated soil fertility management, suitable tillage method, cereal-legume crop rotation/intercropping, greenhouse production, genetic modification, and soil and water conservation measures. Though the current policy and legal frameworks regulating the aforementioned practices are weak, there is an urgent need for them to be strengthened, farmer-sensitive, and implementable. There is therefore the need for up-scaling these practices by strengthening institutional support and adopting a bottom-up extension services approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elmabod, S. K., Muñoz-Rojas, M., Jordán, A., Anaya-Romero, M., Phillips, J. D., Laurence, J., Zhang, Z., Pereira, P., Fleskens, L., van der Ploeg, M., & de la Rosa, D. (2020). Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma, 374, 114453.

    Article  Google Scholar 

  • Alam, M., Ekhwan, M., 2011. Rainfall variation and changing pattern of agricultural cycle. Am. J. Environ. Sci. 7, 82–89

    Article  Google Scholar 

  • Ara N., Bashar M., Begum S. & Kakon S. (2007). Effect of spacing and stem pruning on the growth and yield of tomato. International Journal of Sustainable Crop Production, 2, 35–39.

    Google Scholar 

  • Clark, M., and Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12, 064016.

    Article  Google Scholar 

  • Descheemaeker, K., Oosting, S. J., Tui, S. H., Masikati, P., Falconnier, G. N., & Giller, K. E. (2016). Climate change adaptation and mitigation in smallholder crop – livestock systems in sub-Saharan Africa: a call for integrated impact assessments. Regional Environmental Change.

    Google Scholar 

  • Descheemaeker, K., Reidsma, P., & Giller, K. E. (2020). Climate-smart crop production: understanding complexity for achieving triple-wins. In Climate-smart crop production (pp. 1–46). Burleigh Dodds Science Publishing Limited.

    Google Scholar 

  • Huang, Y., Ren, W., Grove, J., Poffenbarger, H., Jacobsen, K., Tao, B., Zhu, X., & McNear, D. (2020). Assessing synergistic effects of no-tillage and cover crops on soil carbon dynamics in a long-term maize cropping system under climate change. Agricultural and Forest Meteorology, 291.

    Google Scholar 

  • Jarvis, A., Lane, A., & Hijmans, R. J. (2008). The effect of climate change on crop wild relatives. Agriculture, Ecosystems and Environment, 126, 13–23.

    Google Scholar 

  • Kiboi M. N., Ngetich K. F., Fliessbach A., Muriuki A., and Mugendi D. N. (2019). Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya. Agricultural Water Management, 217, 316–331.

    Article  Google Scholar 

  • Kisaka, M.O., Ngetich, F.K., Mugwe, J.N., Mugendi, D., Mairura, F.(2015). Rainfall variability, drought characterization and efficacy of rainfall data reconstruction: case of eastern Kenya. Advanced. Meteorology, 2015, 16.

    Article  Google Scholar 

  • Kravchenko, A. N., Snapp, S. S., & Robertson, G. P. (2017). Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 114, 926–931.

    Article  CAS  Google Scholar 

  • Leisner, C. P. (2020). Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Science, 293, 110412.

    Article  CAS  Google Scholar 

  • Liang C., Cheng G., Wixon D. L., Balser T. C. (2011). An absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 106, 303–309

    Article  Google Scholar 

  • Lobell, D.B. and Field, C.B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Enviromental. Resource Letter, 2, 1–2.

    Google Scholar 

  • Luck, J., Spackman, M., Freeman, A., TreBicki, P., Griffiths, W., Finlay, K., & Chakraborty, S. (2011). Climate change and diseases of food crops. Plant Pathology, 60, 113–121.

    Article  Google Scholar 

  • Lukuyu B, Franzel S, Ongadi P M and Duncan A. J (2011). Livestock feed resources: Current production and management practices in central and northern rift valley provinces of Kenya. Livestock Research for Rural Development. Volume 23,

    Google Scholar 

  • Malhotra, S. K. (2017). Horticultural crops and climate change: A review. Indian Journal of Agricultural Sciences, 87, 12–22.

    Google Scholar 

  • Mall, R. K., Gupta, A., & Sonkar, G. (2017). Effect of Climate Change on Agricultural Crops. In Current Developments in Biotechnology and Bioengineering: Crop Modification, Nutrition, and Food Production. Elsevier B.V.

    Google Scholar 

  • MartĂ­nez-Mena, M., Carrillo-LĂłpez, E., Boix-Fayos, C., Almagro, M., GarcĂ­a Franco, N., DĂ­az-Pereira, E., Montoya, I., & de Vente, J. (2020). Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena, 187, 104352.

    Article  Google Scholar 

  • Meehl, G.A., Stocker, T.F., Collinsetal, W.D., 2007. Global climate projections, In: Solomon, S., Qin, D., Manning, M. (Eds.), Climate Change: The Physical Science Basis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Miriti J. M., Kironchi G., Esilaba A. O., Gachene C. K. K., Heng L. K. and Mwangi D. M. (2013). The effects of tillage systems on soil physical properties and water conservation in a sandy loam soil in Eastern Kenya. Journal of Soil Science and Environmental Management, 4, 146–154

    Article  Google Scholar 

  • Mrabet R., Moussadek R., Fadlaoui A. and Van Rnst E. (2012). Conservation agriculture in dry areas of Morocco. Field Crops Research, 132, 84–94.

    Article  Google Scholar 

  • Mugalavai, E.M., Kipkorir, E.C., Raes, D., Rao, M.S.(2008). Analysis of rainfall onset, cessation and length of growing season for western Kenya. Agricultural and Forest Meteorology, 148, 1123–1135.

    Article  Google Scholar 

  • Mugwe J., Mugendi D., Mucheru-Muna M., Merckx R., Chianu J. and Vanlauwe B. (2009). Determinants of the decision to adopt integrated soil fertility management practices by smallholder farmers in the central highlands of Kenya. Experimental Agriculture,45,61–75.

    Article  Google Scholar 

  • Mulumba L. N. and Lal R. (2008). Mulching effects on selected soil physical properties. Soil and Tillage Research, 98, 106–111.

    Google Scholar 

  • Mupangwa, W., Twomlow, S., Walker, S., 2012. Reduced tillage, mulching and rotational effects on maize (Zea mays L.), cowpea (Vigna unguiculata (Walp) L.) and sorghum (Sorghum bicolor L. (Moench) yields under semi-arid conditions. Field Crop Resources, 132, 139–148.

    Google Scholar 

  • Mustafa, M. A., Mabhaudhi, T., & Massawe, F. (2021). Building a resilient and sustainable food system in a changing world – A case for climate-smart and nutrient dense crops. Global Food Security, 28, 100477.

    Article  Google Scholar 

  • Mutuku, E. A., Roobroeck, D., Vanlauwe, B., Boeckx, P. and Cornelis, W. M. (2020). Maize production under combined Conservation Agriculture and Integrated Soil Fertility Management in the sub-humid and semi-arid regions of Kenya. Field Crops Research, 254, 107833.

    Article  Google Scholar 

  • Ngetich K. F., Mucheru-Muna M., Mugwe J. N., Shisanya C. A., Diels J. and Mugendi D. N. (2014). Length of growing season, rainfall temporal distribution, onset and cessation dates in the Kenyan highlands. Agricultural and Forest Meteorology, 188, 24–32.

    Article  Google Scholar 

  • Oduor N. O., Ngetich K. K., Kiboi M. N., Muruiki A., Adamtey N. and Mugendi D. N. (2020). Suitability of different data sources in rainfall pattern characterization in the tropical central highlands of Kenya. Heliyon, 6, e05375.

    Article  Google Scholar 

  • Okeyo A. I., Mucheru-Muna M., Mugwe J., Ngetich K. F., Mugendi D. N., Diels J. and Shisanya C. A. (2014). Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya. Agricultural Water Management, 137, 52–58.

    Article  Google Scholar 

  • Olesen, J. E., Trnka, M., Kersebaum, K. C., SkjelvĂĄg, A. O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J., & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34, 96–112.

    Article  Google Scholar 

  • Panda, A., Sharma, U., Ninan, K. N., & Patt, A. (2013). Adaptive capacity contributing to improved agricultural productivity at the household level: Empirical findings highlighting the importance of crop insurance. Global Environmental Change, 23, 782–790.

    Article  Google Scholar 

  • Parantu K. Shah, Lokesh P. Tripathi, Lars Juhl Jensen, Murad Gahnim, Christopher Masone, Eileen E. Furlong, Veronica Rodrigues, Kevin P. White, Peer Bork and R. Sowdhamini (2008). Enhanced function annotations for Drosophila serine proteases: A case study for systematic annotation of multi-member gene families. Gene. 407, 199–215.

    Article  CAS  Google Scholar 

  • Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8, 8–34.

    Article  Google Scholar 

  • Recha C., Makokha G., Traore P. S., Shisanya C. and Sako A. (2011). Determination of seasonal rainfall variability, onset and cessation in semi-arid Tharaka district, Kenya. Theoretical and Applied Climatolology, 125, 1–16.

    Google Scholar 

  • Sihvonen, M., Pihlainen, S., Lai, T. Y., Salo, T., & Hyytiäinen, K. (2021). Crop production, water pollution, or climate change Mitigation-Which drives socially optimal fertilization management most? Agricultural Systems, 186, 102985.

    Article  Google Scholar 

  • Singh, A. P., & Dhadse, K. (2021). Economic evaluation of crop production in the Ganges region under climate change: A sustainable policy framework. Journal of Cleaner Production, 278, 123413.

    Article  Google Scholar 

  • Singh, C., Dorward, P., & Osbahr, H. (2016). Developing a holistic approach to the analysis of farmer decision-making: Implications for adaptation policy and practice in developing countries. Land Use Policy, 59, 329–343.

    Article  Google Scholar 

  • Sitienei, R. C., Onwonga, R. N., Lelei, J. J. and Kamoni, P. (2017). Use of Dolichos (Lablab Purpureus L.) and combined fertilizers enhance soil nutrient availability, and maize (Zeamays L.) yield in farming systems of Kabete sub-. Agricultural Science Research Journal 7, 47–61.

    Google Scholar 

  • Tubiello, F. N., Donatelli, M., Rosenzweig, C., & Stockle, C. O. (2000). Effects of climate change and elevated CO 2 on cropping systems: model predictions at two Italian locations. European Journal of Agronomy, 13, 179–189.

    Article  Google Scholar 

  • Vanlauwe B., Descheemaeker K., Giller K. E., Huising J., Merckx R., Nziguheba G. and Zingore S. (2015). Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. Soil, 1, 491–508.

    Article  Google Scholar 

  • Vanlauwe B., Kihara J., Chivenge P., Pypers P., Coe R. and Six J. (2010). Agronomic use efficiency of N fertilizer in maize-based systems in Sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil, 339,35–50.

    Article  Google Scholar 

  • Wang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of climate change on the yield of cereal crops:A review. Climate, 6, 6–41.

    Google Scholar 

  • Xiao, D., Liu, D. L., Feng, P., Wang, B., Waters, C., Shen, Y., Qi, Y., Bai, H., & Tang, J. (2021). Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain. Agricultural Water Management, 246, 106685.

    Article  Google Scholar 

  • Ye, Q., Yang, X., Dai, S., Chen, G., Li, Y., & Zhang, C. (2015). Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China. Agricultural Water Management, 159, 35–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Oduor Otieno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otieno, E.O., Gweyi, J.O., Oduor, N.O. (2022). Revolutionizing Crops and Soil Resources’ Resilience to Climate Change: A Case for Best-Fit Agronomic Practices in Low and High Input Systems. In: Kumar, A., Kumar, P., Singh, S.S., Trisasongko, B.H., Rani, M. (eds) Agriculture, Livestock Production and Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-93262-6_2

Download citation

Publish with us

Policies and ethics