Skip to main content

Drone Technology in Sustainable Agriculture: The Future of Farming Is Precision Agriculture and Mapping

  • Chapter
  • First Online:
Agriculture, Livestock Production and Aquaculture

Abstract

Today, we are using machine tools and a variety of technologies in almost all areas of agriculture. The drone is playing an important role in these techniques. Climate change and environmental pollution are the major global issues of the current era and severely impacting agricultural productivity. As seen, the current conditions are not favorable for Indian agriculture: first, the outbreak of corona epidemic and now the locust swarm can be seen. Working in crowded and far-flung areas is a difficult task during the the Covid pandemic. In view of these circumstances, bringing advanced changes in agriculture is becoming the need of the hour. The impact of ever-increasing technology on agriculture should be seen as a positive trend, as it can prove to be a useful means of sustenance for the growing population day by day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachrach, A.; De Winter, A.; He, R.; Hemann, G.; Prentice, S.; Roy, N. RANGE-Robust Autonomous Navigation in GPS-denied Environments. J. Field Robot. 2010, 28, 1096–1097.

    Google Scholar 

  • Bellia, A.F.; Lanfranco, S. A Preliminary Assessment of the Efficiency of Using Drones in Land Cover Mapping. Xjenza 2019, 7, 18–27.

    Google Scholar 

  • Brunner, C.; Peynot, T.; Vidal-Calleja, T.; Underwood, J. Selective combination of visual and thermal imaging for resilient localization in adverse conditions: Day and night, smoke and fire. J. Field Robot. 2013, 30, 641–666.

    Article  Google Scholar 

  • Cancela, J.J.; González, X.P.; Vilanova, M.; Mirás-Avalos, J.M. Water management using drones and satellites in agriculture. Water 2019, 11, 874.

    Article  Google Scholar 

  • Cunha, F.; Youcef-Toumi, K. Ultra-Wideband Radar for Robust Inspection Drone in Underground Coal Mines. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 86–92.

    Google Scholar 

  • Dube, T.; Sibanda, M.; Shoko, C. Examining the variability of small-reservoir water levels in semi-arid environments for integrated water management purposes, using remote sensing. Trans. R. Soc. S. Afr. 2016, 71, 115–119.

    Article  Google Scholar 

  • Eck, C.; Imbach, B. Aerial Magnetic Sensing With an Uav Helicopter. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-1/C22, 81–85.

    Article  Google Scholar 

  • Forooshani, A.E.; Bashir, S.; Michelson, D.G.; Noghanian, S. A survey of wireless communications and propagation modeling in underground mines. IEEE Commun. Surv. Tutorials 2013, 15, 1524–1545.

    Article  Google Scholar 

  • Guo, H.; Bai, D.; Chen, B.; Cao, Y.; Ju, F.; Qi, F.; Wang, Y. Continuum robot shape estimation using permanent magnets and magnetic sensors. Sensors Actuators A Phys. 2018, 285, 519–530.

    Article  Google Scholar 

  • Ismail, M. Remote Sensing as a Tool in Assessing Water Quality. Life Sci. J. 2012, 9, 246–252. 14. Campbell, G.; Phinn, S.R.; Dekker, A.G.; Brando, V.E. Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens. Environ. 2011, 115, 2402–2414.

    Google Scholar 

  • Jakob, S.; Gloaguen, R.; Laukamp, C. Remote sensing-based exploration of structurally-related mineralizations around Mount Isa, Queensland, Australia. Remote Sens. 2016, 8, 358.

    Article  Google Scholar 

  • Kalantar, B.; Mansor, S.B.; Sameen, M.I.; Pradhan, B.; Shafri, H.Z.M. Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis. Int. J. Remote Sens. 2017, 38, 2535–2556.

    Article  Google Scholar 

  • Lally, H.; O’Connor, I.; Jensen, O.; Graham, C. Can drones be used to conduct water sampling in aquatic environments? A review. Sci. Total Environ. 2019, 670, 569–575.

    Article  CAS  Google Scholar 

  • Lazzeri, G.; Frodella, W.; Rossi, G.; Moretti, S. Multitemporal Mapping of Post-Fire Land Cover Using Multiplatform PRISMA Hyperspectral and Sentinel-UAV Multispectral Data: Insights from Case Studies in Portugal and Italy. Sensors 2021, 21, 3982.

    Article  Google Scholar 

  • Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772.

    Article  Google Scholar 

  • Lucieer, A.; Jong, S.M.D; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116.

    Article  Google Scholar 

  • Moseley, T.; Zabierek, G. Guidance on the Safe Use of Lasers in Education and Research, Aurpo Guidance, Note No. 7; Association of University Radiation Protection Officers. August 2012. Available online: https://www.gla.ac.uk/media/Media_418032_smxx.pdf (accessed on 8 July 2020).

  • Ovakoglou, G.; Alexandridis, T.K.; Crisman, T.L.; Skoulikaris, C.; Vergos, G.S. Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 37–46.

    Google Scholar 

  • Ranjan, A.; Sahu, H.; Sahu, H.B. Communication Challenges in Underground Mines. Search Res. 2014, V, 23–29. 83. Pamela Drones Go Underground as Mining Applications Expand-Unmanned Systems Source. Available online: https://www.unmannedsystemssource.com/drones-go-underground-as-miningapplications-expand/ (accessed on 8 May 2020).

  • Rivard, B.; Harris, J.; Maloley, M.; White, H.P.; Peter, J.M.; Laakso, K.; Rogge, D. Application of Airborne, Laboratory, and Field Hyperspectral Methods to Mineral Exploration in the Canadian Arctic: Recognition and Characterization of Volcanogenic Massive Sulfide-Associated Hydrothermal Alteration in the Izok Lake Deposit Area, Nunavut. Econ. Geol. 2015, 110, 925–941.

    Article  Google Scholar 

  • Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 2018, 15, 1045–1052.

    Article  Google Scholar 

  • Ruwaimana, M.; Satyanarayana, B.; Otero, V.; Muslim, A.M.; Syafiq, A.M.; Ibrahim, S.; Raymaekers, D.; Koedam, N.; Dahdouh-Guebas, F. The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLoS ONE 2018, 13, e0200288.

    Article  Google Scholar 

  • Sallam, A.; Alharbi, A.B.; Usman, A.R.; Hussain, Q.; Ok, Y.S.; Alshayaa, M.; Al-Wabel, M. Environmental consequences of dam construction: A case study from Saudi Arabia. Arab. J. Geosci. 2018, 11, 1–12.

    Article  Google Scholar 

  • Santos, J.M.; Couceiro, M.S.; Portugal, D.; Rocha, R.P. A Sensor Fusion Layer to Cope with Reduced Visibility in SLAM. J. Intell. Robot. Syst. Theory Appl. 2015, 80, 401–422.

    Article  Google Scholar 

  • Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269.

    Article  Google Scholar 

  • Suo, C.; McGovern, E.; Gilmer, A. Coastal Dune Vegetation Mapping Using a Multispectral Sensor Mounted on an UAS. Remote Sens. 2019, 11, 1814.

    Google Scholar 

  • Vanamburg, L.K.; Trlica, M.J.; Hoffer, R.M.; Weltz, M.A. Ground based digital imagery for grassland biomass estimation. Int. J. Remote Sens. 2006, 27, 939–950.

    Article  Google Scholar 

  • Waiser, T.H.; Morgan, C.L.S.; Brown, D.J.; Hallmark, C.T. In Situ Characterization of Soil Clay Content with Visible Near-Infrared Diffuse Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2007, 71, 389.

    Article  CAS  Google Scholar 

  • Xiang, T.-Z.; Xia, G.-S.; Zhang, L. Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, applications, and prospects. IEEE Geosci. Remote Sens. Mag. 2019, 7, 29–63.

    Article  Google Scholar 

  • Zimmermann, R.; Brandmeier, M.; Andreani, L.; Mhopjeni, K.; Gloaguen, R. Remote sensing exploration of Nb-Ta-LREE-enriched carbonatite (Epembe/Namibia). Remote Sens. 2016, 8, 620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Rani, M., Aishwarya, Kumar, P. (2022). Drone Technology in Sustainable Agriculture: The Future of Farming Is Precision Agriculture and Mapping. In: Kumar, A., Kumar, P., Singh, S.S., Trisasongko, B.H., Rani, M. (eds) Agriculture, Livestock Production and Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-93262-6_1

Download citation

Publish with us

Policies and ethics