Skip to main content

A Non-hyperarithmetical Gödel Logic

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13137))

Included in the following conference series:

  • 573 Accesses

Abstract

Let \(\mathsf{{G}}_\downarrow \) be the Gödel logic whose set of truth values is . Baaz-Leitsch-Zach have shown that \(\mathsf{{G}}_\downarrow \) is not recursively axiomatizable and Hájek showed that it is not arithmetical. We find the optimal strengthening of their theorems and prove that the set of validities of \(\mathsf{{G}}_\downarrow \) is \(\varPi ^1_1\) complete and the set of satisfiable formulas in \(\mathsf{{G}}_\downarrow \) is \(\varSigma ^1_1\) complete.

J.P. Aguilera—Supported by FWF grant I4513N and FWO grant 3E017319.

J. Bydzovsky—Supported by FWF grant P31955 and I4427.

J.P. Aguilera and D. Fernández-Duque—Supported by FWO-FWF Lead Agency Grant G030620N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of a first-order Gödel logic and some temporal logics of programs. In: Proceedings of CSL 1995, vol. 68 (1996)

    Google Scholar 

  2. Baaz, M., Preining, N., Zach, R.: Completeness of a hypersequent calculus for some first-order Godel logics with delta. In: ISMVL, p. 9. IEEE Computer Society (2006)

    Google Scholar 

  3. Barwise, J.: Admissible Sets and Structures. Perspectives in Mathematical Logic. Springer, Heidelberg (1975)

    Google Scholar 

  4. Barwise, K.J., Gandy, R., Moschovakis, Y.N.: The next admissible set. J. Symb. Log. 36, 108–120 (1971)

    Article  MathSciNet  Google Scholar 

  5. Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24, 97–106 (1959)

    Article  MathSciNet  Google Scholar 

  6. Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien 69, 65–66 (1932)

    MATH  Google Scholar 

  7. Hájek, P.: Fuzzy logic and the arithmetical hierarchy, III. Studia Log. 68, 129–142 (2001). https://doi.org/10.1023/A:1011906423560

  8. Hájek, P.: A non-arithmetical Gödel logic. Log. J. IGPL 13, 435–441 (2005)

    Article  MathSciNet  Google Scholar 

  9. Kröger, F.: Temporal Logic of Programs. Monographs in Theoretical Computer Science (EATCS Series), vol. 8. Springer, Berlin (1987). https://doi.org/10.1007/978-3-642-71549-5

  10. Montagna, F.: Three complexity problems in quantified fuzzy logic. Studia Log. 68, 143–152 (2001). https://doi.org/10.1023/A:1011958407631

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilera, J.P., Bydzovsky, J., Fernández-Duque, D. (2022). A Non-hyperarithmetical Gödel Logic. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2022. Lecture Notes in Computer Science(), vol 13137. Springer, Cham. https://doi.org/10.1007/978-3-030-93100-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93100-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93099-8

  • Online ISBN: 978-3-030-93100-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics