Skip to main content

Hallmarks of Cancer: Molecular Underpinnings

  • Chapter
  • First Online:
Cancer Metastasis Through the Lymphovascular System

Abstract

Cancer, a genetic disease, is an autonomous organ composed of heterogeneous cancer cell clones supported by its microenvironment. The cancer cells gain a set of properties and characteristics called hallmarks of cancer and enabling characteristics, respectively, that highjack the normal cellular mechanisms for their purpose. These are thought to be acquired in a stepwise fashion, in no particular order, giving cancer cells a survival advantage over normal cells, making them self-sustainable, invade and metastasize to distant locations. This chapter provides a brief overview and key concepts on the molecular underpinnings of cancer cells composed of eight hallmarks of cancer and two enabling characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  3. Westermark B. Platelet-derived growth factor in glioblastoma-driver or biomarker? Ups J Med Sci. 2014;119(4):298–305. https://doi.org/10.3109/03009734.2014.970304.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181. https://doi.org/10.1038/s41392-020-00222-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–84. https://doi.org/10.1016/j.ceb.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  6. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34. https://doi.org/10.1016/j.cell.2010.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perona R. Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol. 2006;8(2):77–82. https://doi.org/10.1007/s12094-006-0162-1.

    Article  CAS  PubMed  Google Scholar 

  8. Witsch E, Sela M, Yarden Y. Roles for growth factors in cancer progression. Physiology (Bethesda). 2010;25(2):85–101. https://doi.org/10.1152/physiol.00045.2009.

    Article  CAS  Google Scholar 

  9. Consortium, A. P. G. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818–31. https://doi.org/10.1158/2159-8290.CD-17-0151.

    Article  Google Scholar 

  10. Davies MA, Samuels Y. Analysis of the genome to personalize therapy for melanoma. Oncogene. 2010;29(41):5545–55. https://doi.org/10.1038/onc.2010.323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007. https://doi.org/10.3892/etm.2020.8454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9(6):667–76. https://doi.org/10.1023/B:APPT.0000045801.15585.dd.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497–510. https://doi.org/10.1038/onc.2008.245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744–56. https://doi.org/10.1111/j.1365-2141.2011.09013.x.

    Article  CAS  PubMed  Google Scholar 

  15. Patterson KI, Brummer T, O'Brien PM, Daly RJ. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J. 2009;418(3):475–89. https://doi.org/10.1042/bj20082234.

    Article  CAS  PubMed  Google Scholar 

  16. Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7. https://doi.org/10.1158/1078-0432.CCR-11-2283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar V, Abbas AK, Aster JC, Turner JR, Robbins SL, Cotran RS. Robbins & Cotran pathologic basis of disease; 2021.

    Google Scholar 

  18. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer. 2010;10(1):51–7. https://doi.org/10.1038/nrc2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci. 1971;68(4):820–3. https://doi.org/10.1073/pnas.68.4.820.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548(7667):297–303. https://doi.org/10.1038/nature23306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol. 2007;177(5):893–903. https://doi.org/10.1083/jcb.200703010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okada T, Lopez-Lago M, Giancotti FG. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol. 2005;171(2):361–71. https://doi.org/10.1083/jcb.200503165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10(6):415–24. https://doi.org/10.1038/nrc2853.

    Article  CAS  PubMed  Google Scholar 

  24. Massague J. TGFbeta in cancer. Cell. 2008;134(2):215–30. https://doi.org/10.1016/j.cell.2008.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324–37. https://doi.org/10.1038/sj.onc.1210220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432(7015):307–15. https://doi.org/10.1038/nature03098.

    Article  CAS  PubMed  Google Scholar 

  28. Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: a comprehensive review. Biomed Pharmacother. 2018;104:485–95. https://doi.org/10.1016/j.biopha.2018.05.007.

    Article  CAS  PubMed  Google Scholar 

  29. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7. https://doi.org/10.1038/nm0797-730.

    Article  CAS  PubMed  Google Scholar 

  30. Burnet Sir M. Intrinsic mutagenesis: a genetic approach to ageing. Dordrecht: Springer Netherlands; 2012.

    Google Scholar 

  31. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6.

    Article  CAS  PubMed  Google Scholar 

  32. Heidenreich B, Rachakonda PS, Hemminki K, Kumar R. TERT promoter mutations in cancer development. Curr Opin Genet Dev. 2014;24:30–7. https://doi.org/10.1016/j.gde.2013.11.005.

    Article  CAS  PubMed  Google Scholar 

  33. Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18(3):175–86. https://doi.org/10.1038/nrm.2016.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

    Article  CAS  PubMed  Google Scholar 

  35. Zee YK, O’Connor JP, Parker GJ, Jackson A, Clamp AR, Taylor MB, et al. Imaging angiogenesis of genitourinary tumors. Nat Rev Urol. 2010;7(2):69–82. https://doi.org/10.1038/nrurol.2009.262.

    Article  PubMed  Google Scholar 

  36. Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19(5):329–37. https://doi.org/10.1016/j.semcancer.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  37. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10. https://doi.org/10.1038/nrc1093.

    Article  CAS  PubMed  Google Scholar 

  38. Patenaude A, Parker J, Karsan A. Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res. 2010;79(3):217–23. https://doi.org/10.1016/j.mvr.2010.01.007.

    Article  CAS  PubMed  Google Scholar 

  39. Menakuru SR, Brown NJ, Staton CA, Reed MW. Angiogenesis in pre-malignant conditions. Br J Cancer. 2008;99(12):1961–6. https://doi.org/10.1038/sj.bjc.6604733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raica M, Cimpean AM, Ribatti D. Angiogenesis in pre-malignant conditions. Eur J Cancer. 2009;45(11):1924–34. https://doi.org/10.1016/j.ejca.2009.04.007.

    Article  CAS  PubMed  Google Scholar 

  41. Sporn MB. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 1976;36(7 PT 2):2699–702. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1277177.

    CAS  PubMed  Google Scholar 

  42. Ryan BM, Faupel-Badger JM. The hallmarks of premalignant conditions: a molecular basis for cancer prevention. Semin Oncol. 2016;43(1):22–35. https://doi.org/10.1053/j.seminoncol.2015.09.007.

    Article  CAS  PubMed  Google Scholar 

  43. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–69. https://doi.org/10.1158/0008-5472.CAN-10-1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akhtar M, Haider A, Rashid S, Al-Nabet A. Paget’s “seed and soil” theory of cancer metastasis: an idea whose time has come. Adv Anat Pathol. 2019;26(1):69–74. https://doi.org/10.1097/PAP.0000000000000219.

    Article  CAS  PubMed  Google Scholar 

  45. Langley RR, Fidler IJ. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev. 2007;28(3):297–321. https://doi.org/10.1210/er.2006-0027.

    Article  CAS  PubMed  Google Scholar 

  46. Riggi N, Aguet M, Stamenkovic I. Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annu Rev Pathol. 2018;13:117–40. https://doi.org/10.1146/annurev-pathol-020117-044127.

    Article  CAS  PubMed  Google Scholar 

  47. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. https://doi.org/10.1126/sciadv.1600200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37. https://doi.org/10.1038/nrc3038.

    Article  CAS  PubMed  Google Scholar 

  49. Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D. Oncometabolites: a new paradigm for oncology, metabolism, and the clinical laboratory. Clin Chem. 2017;63(12):1812–20. https://doi.org/10.1373/clinchem.2016.267666.

    Article  CAS  PubMed  Google Scholar 

  50. Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget. 2017;8(4):7175–80. https://doi.org/10.18632/oncotarget.12739.

    Article  PubMed  Google Scholar 

  51. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74. https://doi.org/10.1126/science.aaa4971.

    Article  CAS  PubMed  Google Scholar 

  52. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. https://doi.org/10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  53. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. https://doi.org/10.1038/nature12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8. https://doi.org/10.1038/nrm2858.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay A. Chitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chitale, D.A. (2022). Hallmarks of Cancer: Molecular Underpinnings. In: Leong, S.P., Nathanson, S.D., Zager, J.S. (eds) Cancer Metastasis Through the Lymphovascular System. Springer, Cham. https://doi.org/10.1007/978-3-030-93084-4_1

Download citation

Publish with us

Policies and ethics