Skip to main content

Signatures of Transient Purely Ballistic Heat Conduction: Theory and Experimental Investigation

  • Chapter
  • First Online:
Book cover Mechanics and Control of Solids and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 164))

  • 563 Accesses

Abstract

In this paper, we propose an approach to define thermal conductivity for a purely ballistic transient heat conduction and study its size dependence for two-dimensional structures in circular geometry in order to use this dependence as a purely ballistic regime signature. Then, a review of various experimental techniques by which the thermal conductivity is measured is presented. Finally, the thermal conductivity of graphene in purely diffusive regime is measured for one fixed sample size using Raman thermometry. The result of the proposed theoretical approach is a linear dependence on the sample size in the case of purely ballistic thermal conductivity. An outcome of an experimental study of graphene in a purely diffusive regime and the presented review of experimental methods are the basis for an extension of further experimental studies to the anomalous heat conduction regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FPU \(=\) Fermi-Pasta-Ulam.

References

  1. Abali, B., Wu, C., Müller, W.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28(5), 1221–1246 (2016)

    Article  MathSciNet  Google Scholar 

  2. Cai, W., Moore, A., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645–1651 (2010)

    Article  Google Scholar 

  3. Calizo, I., Balandin, A., Bao, W., Miao, F., Lau, C.: Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)

    Article  Google Scholar 

  4. Cao, A.: Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries. J. Appl. Phys. 111(8), 083528 (2012)

    Google Scholar 

  5. Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A., Ruoff, R.: Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012)

    Article  Google Scholar 

  6. Dhar, A., Kundu, A., Kundu, A.: Anomalous heat transport in one dimensional systems: a description using non-local fractional-type diffusion equation. Front. Phys. 7, 159 (2019)

    Article  Google Scholar 

  7. Dmitriev, S., Baimova, J., Savin, A., Kivshar, Y.: Ultimate strength, ripples, sound velocities, and density of phonon states of strained graphene. Comput. Mater. Sci. 53(1), 194–203 (2012)

    Article  Google Scholar 

  8. El Sachat, A., Könemann, F., Menges, F., Del Corro, E., Garrido, J., Torres, C., Alzina, F., Gotsmann, B.: Crossover from ballistic to diffusive thermal transport in suspended graphene membranes. 2D Mater. 6(2), 025034 (2019)

    Google Scholar 

  9. Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R., Geim, A.: Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4(4), 1889–1892 (2010)

    Article  Google Scholar 

  10. Fehér, A., Lukács, N., Somlai, L., Fodor, T., Szücs, M., Fülöp, T., Ván, P., Kovács, R.: Size effects and beyond-fourier heat conduction in room-temperature experiments (2021). arXiv:2102.11744

  11. Huberman, S., Duncan, R., Chen, K., Song, B., Chiloyan, V., Ding, Z., Maznev, A., Chen, G., Nelson, K.: Observation of second sound in graphite at temperatures above 100 k. Science 364(6438), 375–379 (2019)

    Article  Google Scholar 

  12. Hwang, G., Kwon, O.: Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy. Nanoscale 8(9), 5280–5290 (2016)

    Article  Google Scholar 

  13. Klemens, P., Pedraza, D.: Thermal conductivity of graphite in the basal plane. Carbon 32(4), 735–741 (1994)

    Article  Google Scholar 

  14. Koukaras, E., Kalosakas, G., Galiotis, C., Papagelis, K.: Phonon properties of graphene derived from molecular dynamics simulations. Sci. Rep. 5(1), 1–9 (2015)

    Article  Google Scholar 

  15. Kovács, R., Rogolino, P.: Numerical treatment of nonlinear fourier and maxwell-cattaneo-vernotte heat transport equations. Int. J. Heat Mass Transf. 150, 119281 (2020)

    Google Scholar 

  16. Kuzkin, V.: Unsteady ballistic heat transport in harmonic crystals with polyatomic unit cell. Contin. Mech. Thermodyn. 31(6), 1573–1599 (2019)

    Article  MathSciNet  Google Scholar 

  17. Kuzkin, V., Krivtsov, A.: Fast and slow thermal processes in harmonic scalar lattices. J. Phys. Condens. Matter 29(50), 505401 (2017)

    Google Scholar 

  18. Kuzkin, V., Krivtsov, A.: Ballistic resonance and thermalization in the Fermi-Pasta-Ulam-Tsingou chain at finite temperature. Phys. Rev. E 101(4), 042209 (2020)

    Google Scholar 

  19. Lebon, G., Jou, D., Casas-Vázquez, J., Muschik, W.: Heat conduction at low temperature: a non-linear generalization of the guyer-krumhansl equation. Period. Polytech. Chem. Eng. 41(2), 185–196 (1997)

    Google Scholar 

  20. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    Article  MathSciNet  Google Scholar 

  21. Liebold, C., Müller, W.: Measuring material coefficients of higher gradient elasticity by using AFM techniques and Raman-spectroscopy. In: Generalized Continua as Models for Materials, pp. 255–271. Springer (2013)

    Google Scholar 

  22. Liebold, C., Müller, W.: Comparison of gradient elasticity models for the bending of micromaterials. Comput. Mater. Sci. 116, 52–61 (2016)

    Article  Google Scholar 

  23. Mak, K., Sfeir, M., Wu, Y., Lui, C.H., Misewich, J.A., Heinz, T.F.: Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101(19), 196405 (2008)

    Google Scholar 

  24. Nair, R., Blake, P., Grigorenko, A., Novoselov, K., Booth, T., Stauber, T., Peres, N., Geim, A.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)

    Article  Google Scholar 

  25. Nguyen, K., Abdula, D., Tsai, C., Shim, M.: Temperature and gate voltage dependent raman spectra of single-layer graphene. Acs Nano 5(6), 5273–5279 (2011)

    Article  Google Scholar 

  26. Northrop, G., Wolfe, J.: Ballistic phonon imaging in solids–a new look at phonon focusing. Phys. Rev. Lett. 43(19), 1424 (1979)

    Article  Google Scholar 

  27. Okamoto, N., Yanagisawa, R., Anufriev, R., A., M., Sawano, K., Kurosawa, M., Nomura, M.: Semiballistic thermal conduction in polycrystalline sige nanowires. Appl. Phys. Lett. 115(25), 253101 (2019)

    Google Scholar 

  28. Saito, K., Dhar, A.: Heat conduction in a three dimensional anharmonic crystal. Phys. Rev. Lett. 104(4), 040601 (2010)

    Google Scholar 

  29. Saito, R., Mizuno, M., Dresselhaus, M.: Ballistic and diffusive thermal conductivity of graphene. Phys. Rev. Appl. 9(2), 024017 (2018)

    Google Scholar 

  30. Volz, S.: Microscale and Nanoscale Heat Transfer. Topics in Applied Physics, vol. 107. Springer, Berlin Heidelberg (2007)

    MATH  Google Scholar 

  31. Wang, L., Hu, B., Li, B., et al.: Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Phys. Rev. E 86(4), 040101 (2012)

    Google Scholar 

  32. Xu, X., Pereira, L., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Bui, C., Xie, R., Thong, J., et al.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5(1), 1–6 (2014)

    Google Scholar 

Download references

Acknowledgements

The proposed theoretical and experimental approaches lay the foundation for further studies of ballistic heat propagation in crystals within the framework of projects of the German Research Foundation (DFG) (Grant No. 405631704) and the Russian Science Foundation (Grant No. 19-41-04106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei A. Sokolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sokolov, A.A., Müller, W.H., Krivtsov, A.M., Porubov, A.V. (2022). Signatures of Transient Purely Ballistic Heat Conduction: Theory and Experimental Investigation. In: Polyanskiy, V.A., K. Belyaev, A. (eds) Mechanics and Control of Solids and Structures. Advanced Structured Materials, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-030-93076-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93076-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93075-2

  • Online ISBN: 978-3-030-93076-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics