Skip to main content

Boosting Few-Shot Learning with Task-Adaptive Multi-level Mixed Supervision

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Abstract

In this paper, we propose a novel task-adaptive few-shot learning (FSL) method called Multi-Level Mixed Supervision (MLMS), which adapts a classifier specifically for each task by mixed supervision. Our method complements the supervised training with a multi-level unsupervised loss including the instance-level certainty term, set-level divergence term, and group-level consistency term. We further modify the set-level divergence term under the unbalanced prior situation where different classes of the unlabeled set contain different numbers of samples. Besides, we propose an approximate solution of minimizing our MLMS loss which is faster than the gradient-based method. Extensive experiments on multiple FSL datasets demonstrate that our method outperforms several recent models by an obvious margin on both transductive FSL and semi-supervised FSL tasks. Codes and trained models are available at https://github.com/Wangduo428/few-shot-learning-mlms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boudiaf, M., Masud, Z.I., Rony, J., Dolz, J., Piantanida, P., Ayed, I.B.: Transductive information maximization for few-shot learning (2020). arXiv preprint arXiv:2008.11297

  2. Chen, W., Liu, Y., Kira, Z., Wang, Y.F., Huang, J.: A closer look at few-shot classification. In: International Conference on Learning Representations, ICLR (2019)

    Google Scholar 

  3. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. In: International Conference on Learning Representations, ICLR (2020)

    Google Scholar 

  4. Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: Advances in Neural Information Processing Systems, NeurIPS, pp. 4005–4016 (2019)

    Google Scholar 

  5. Hu, S.X., et al.: Empirical bayes transductive meta-learning with synthetic gradients. In: International Conference on Learning Representations, ICLR (2020)

    Google Scholar 

  6. Kim, J., Kim, T., Kim, S., Yoo, C.D.: Edge-labeling graph neural network for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11–20 (2019)

    Google Scholar 

  7. Kye, S.M., Lee, H.B., Kim, H., Hwang, S.J.: Transductive few-shot learning with meta-learned confidence (2020). arXiv preprint arXiv:2002.12017

  8. Li, X., et al.: Learning to self-train for semi-supervised few-shot classification. In: Advances in Neural Information Processing Systems: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, December, vol. 8, pp. 1–11 (1906)

    Google Scholar 

  9. Lichtenstein, M., Sattigeri, P., Feris, R., Giryes, R., Karlinsky, L.: TAFSSL: task-adaptive feature sub-space learning for few-shot classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 522–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_31

    Chapter  Google Scholar 

  10. Liu, J., Song, L., Qin, Y.: Prototype rectification for few-shot learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 741–756. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_43

    Chapter  Google Scholar 

  11. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. In: International Conference on Learning Representations, ICLR (2019)

    Google Scholar 

  12. Ma, Y., et al.: Transductive relation-propagation network for few-shot learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 804–810 (2020). https://doi.org/10.24963/ijcai.2020/112

  13. Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., Tian, Y.: Transductive episodic-wise adaptive metric for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3603–3612 (2019)

    Google Scholar 

  14. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations, ICLR (2017)

    Google Scholar 

  15. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: International Conference on Learning Representations, ICLR (2018)

    Google Scholar 

  16. Simon, C., Koniusz, P., Nock, R., Harandi, M.: Adaptive subspaces for few-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  17. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, NeurIPS, pp. 4077–4087 (2017)

    Google Scholar 

  18. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, NeurIPS, pp. 3630–3638 (2016)

    Google Scholar 

  19. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  20. Wang, Y., Chao, W., Weinberger, K.Q., van der Maaten, L.: Simpleshot: revisiting nearest-neighbor classification for few-shot learning. arXiv e-prints (2019)

    Google Scholar 

  21. Yang, L., Li, L., Zhang, Z., Zhou, X., Zhou, E., Liu, Y.: DPGN: distribution propagation graph network for few-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  22. Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Few-shot learning via embedding adaptation with set-to-set functions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 8808–8817 (2020)

    Google Scholar 

  23. Yu, Z., Chen, L., Cheng, Z., Luo, J.: Transmatch: a transfer-learning scheme for semi-supervised few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12856–12864 (2020)

    Google Scholar 

  24. Ziko, I., Dolz, J., Granger, E., Ayed, I.B.: Laplacian regularized few-shot learning. In: International Conference on Machine Learning, pp. 11660–11670. PMLR (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, D., Ma, Q., Zhang, M., Zhang, T. (2021). Boosting Few-Shot Learning with Task-Adaptive Multi-level Mixed Supervision. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13070. Springer, Cham. https://doi.org/10.1007/978-3-030-93049-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93049-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93048-6

  • Online ISBN: 978-3-030-93049-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics