Skip to main content

Lightweight Convolutional SNN for Address Event Representation Signal Recognition

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

Abstract

SNN (Spiking Neural Network) is well suited for DVS (Dynamic Vision Sensor) object recognition because the output of the DVS sensor is the spike. The existing SNNs usually build networks by fully connection with a large number of parameters. However, the deep network is unable to train with this connection and large parameter networks cannot be deployed where storage is limited. To overcome these shortcomings, we introduce a new model called Fire module. There are two structures in Fire module. One is a combination of weight sharing layers and the other is a skip connection, which reduces the number of parameters and makes deep network trainable respectively. We compare our method with existing SNNs and show that our method achieves competitive performance with 1800x fewer parameters against fully connection on TMV3-DVS and N-CARS datasets. Moreover, we combine the DVS sensor and our lightweight SNN object recognition network to produce an object recognition hardware system.

This work was partially supported by the NSF of China (No. 62022063, No. 61772388 and No. 61632019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, F.C., Muir, D.R., Indiveri, G.: Real-time ultra-low power ECG anomaly detection using an event-driven neuromorphic processor. IEEE Trans. Biomed. Circuits Syst. 13(6), 1575–1582 (2019). https://doi.org/10.1109/TBCAS.2019.2953001

    Article  Google Scholar 

  2. Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput. Vision 113(1), 54–66 (2014). https://doi.org/10.1007/s11263-014-0788-3

    Article  MathSciNet  Google Scholar 

  3. Delbrück, T., Linares-Barranco, B., Culurciello, E., Posch, C.: Activity-driven, event-based vision sensors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 2426–2429 (2010). https://doi.org/10.1109/ISCAS.2010.5537149

  4. Diehl, P.U., Neil, D., Binas, J., Cook, M., Liu, S., Pfeiffer, M.: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015). https://doi.org/10.1109/IJCNN.2015.7280696

  5. Gerstner, W.: Time structure of the activity in neural network models. Phys. Rev. E 51(1), 738–758 (1995). https://doi.org/10.1103/PhysRevE.51.738

    Article  MathSciNet  Google Scholar 

  6. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing–based decisions. Nat. Neurosci. 9(3), 420–428 (2006). https://doi.org/10.1038/nn1643

    Article  Google Scholar 

  7. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016). https://doi.org/10.3389/fnins.2016.00508

    Article  Google Scholar 

  8. Mostafa, H.: Supervised learning based on temporal coding in spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3227–3235 (2018). https://doi.org/10.1109/TNNLS.2017.2726060

    Article  Google Scholar 

  9. Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benosman, R.: HFirst: a temporal approach to object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2028–2040 (2015). https://doi.org/10.1109/TPAMI.2015.2392947

    Article  Google Scholar 

  10. Panda, P., Roy, K.: Unsupervised regenerative learning of hierarchical features in Spiking Deep Networks for object recognition. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 299–306 (2016). https://doi.org/10.1109/IJCNN.2016.7727212

  11. Pei, J., et al.: Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572(7767), 106–111 (2019). https://doi.org/10.1038/s41586-019-1424-8

    Article  Google Scholar 

  12. Ponulak, F., Kasiński, A.: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010). https://doi.org/10.1162/neco.2009.11-08-901

    Article  MathSciNet  MATH  Google Scholar 

  13. Posch, C., Matolin, D., Wohlgenannt, R.: A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 46(1), 259–275 (2011). https://doi.org/10.1109/JSSC.2010.2085952

    Article  Google Scholar 

  14. Rueckauer, B., Lungu, I.A., Hu, Y., Pfeiffer, M., Liu, S.C.: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front. Neurosci. 11, 682 (2017). https://doi.org/10.3389/fnins.2017.00682

    Article  Google Scholar 

  15. Shrestha, S.B., Orchard, G.: SLAYER: spike layer error reassignment in time. arXiv:1810.08646 [cs, stat] (2018)

  16. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1731–1740 (2018)

    Google Scholar 

  17. Zeng, Y., Zhang, T., Xu, B.: Improving multi-layer spiking neural networks by incorporating brain-inspired rules. Sci. China Inf. Sci. 60(5), 1–11 (2017). https://doi.org/10.1007/s11432-016-0439-4

    Article  Google Scholar 

  18. Zhang, T., Zeng, Y., Zhao, D., Shi, M.: A plasticity-centric approach to train the non-differential spiking neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32(1) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Huang, B., Wu, J., Shi, G. (2021). Lightweight Convolutional SNN for Address Event Representation Signal Recognition. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics