Skip to main content

Abstract

In the developed world, lymphedema predominantly affects survivors of breast, gynecologic, or urologic cancers, for whom it may be their greatest survivorship burden. Caring for lymphedema imposes a significant time burden on patients and their carers, and leads to cumulative and cascading economic consequences, in particular when complicated by infections. Recently, there has been rapidly growing interest in lymphedema driven by advances in nonsurgical and surgical treatments to reduce the functional and psychosocial disability of lymphedema. These modern surgical and supermicrosurgical procedures are delivered in concert with skilled conservative therapy to maximize the magnitude and consistency of outcomes from lymphedema surgery. Current gold-standard management of lymphedema recognizes the superior effectiveness of the multimodal multidisciplinary team approach delivered within lymphedema centers offering the highest standard of best practice multi-team comprehensive care. Indocyanine green (ICG) lymphography has been a significant advance as an important and practical tool for diagnosis and surgical decision-making, and to enable lymphovenous bypass (LVB) to be performed. Axillary lymphadenectomy and adjuvant radiation therapy often result in significant axillary scar contracture that limits arm range of motion. Lysis of the axillary scar adhesions combined with orthotopic proximal vascularized lymph node transplantation to the axilla can provide significant improvement in function and quality of life in addition to treating the lymphedema affecting the arm and trunk. In appropriately selected patients who are continuously compliant with compression garments with significant fibroadipose soft tissue excess that affects arm function, suction-assisted lipectomy (SAL) debulking surgery can achieve tremendous improvements in quality of life and limb function, as well as reducing the incidence of infections. Advances in pharmacological treatments are awaited and anticipated to significantly impact prevention and treatment of lymphedema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stout NL, Pfalzer LA, Springer B, et al. Breast cancer-related lymphedema: comparing direct costs of a prospective surveillance model and a traditional model of care. Phys Ther. 2012;92:152–63.

    Article  Google Scholar 

  2. Lopez M, Roberson ML, Strassle PD, et al. Epidemiology of lymphedema-related admissions in the United States: 2012-2017. Surg Oncol. 2020;35:249–53.

    Article  Google Scholar 

  3. Fu MR, Ridner SH, Hu SH, Stewart BR, Cormier JN, Armer JM. Psychosocial impact of lymphedema: a systematic review of literature from 2004–2011. Psychooncology. 2013;22:1466–84.

    Article  Google Scholar 

  4. Rockson SG. Estimating the population burden of lymphedema. Ann N Y Acad Sci. 2008;1131:147–54.

    Article  Google Scholar 

  5. Mendoza N, Li A, Gill A, Tyring S. Filariasis: diagnosis and treatment. Dermatol Ther. 2009;22:475–90.

    Article  Google Scholar 

  6. Moffatt CJ. Lymphoedema: an underestimated health problem. QJM. 2003;96:731–8.

    Article  CAS  Google Scholar 

  7. Nguyen TT, Hoskin TL, Habermann EB, et al. Breast cancer-related lymphedema risk is related to multidisciplinary treatment and not surgery alone: results from a large cohort study. Ann Surg Oncol. 2017;24:2972–80.

    Article  Google Scholar 

  8. Mihara M, Hara H, Hayashi Y, Narushima M, Yamamoto T, Todokoro T, et al. Pathological steps of cancer-related lymphedema: histological changes in the collecting lymphatic vessels after lymphadenectomy. PLoS One. 2012;7:e41126.

    Article  CAS  Google Scholar 

  9. Zampell JC, Aschen S, Weitman ES, Yan A, Elhadad S, De Brot M, et al. Regulation of adipogenesis by lymphatic fluid stasis: part I. Adipogenesis, fibrosis, and inflammation. Plast Reconstr Surg. 2012;29:825–34.

    Article  Google Scholar 

  10. Smeltzer DM, Stickler GB, Schirger A. Primary lymphedemas in children and adolescents: a follow-up study and review. Pediatrics. 1985;76:206–18.

    CAS  PubMed  Google Scholar 

  11. Wolfe J, Kinmonth JB. The prognosis of primary lymphedema of the lower limbs. Arch Surg. 1981;116:1157–60.

    Article  CAS  Google Scholar 

  12. Mendola A, Schlogel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastre E, et al. Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema. Mol Syndromol. 2013;4:257–66.

    Article  CAS  Google Scholar 

  13. Connell FC, Ostergaard P, Carver C, Brice G, Williams N, Mansour S, Mortimer PS, Jeffery S. Analysis of the coding regions of VEGFR3 and VEGFRC in Milroy disease and other primary lymphoedemas. Hum Genet. 2009;124:625–31.

    Article  CAS  Google Scholar 

  14. Gordon K, Spiden SL, Connell FC, Brice G, Cottrell S, Short J, et al. FLT4/VEGFR3 and Milroy disease: novel mutations, a review of published variants and database update. Hum Mutat. 2013;34:23–31.

    Article  CAS  Google Scholar 

  15. Allen EV. Lymphedema of the extremities. Classification, etiology and differential diagnoses. A study of 300 cases. Arch Intern Med. 1934;56:606–24.

    Article  Google Scholar 

  16. Connell FC, Gordon K, Brice G, Keeley V, Jeffery S, Mortimer PS, et al. The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. Clin Genet. 2013;84:303–14.

    Article  CAS  Google Scholar 

  17. Schook CC, Mulliken JB, Fishman SJ, Grant F, Zurakowski D, Greene AK. Primary lymphedema: clinical features and management in 138 pediatric patients. Plast Reconstr Surg. 2011;127:2419–31.

    Article  CAS  Google Scholar 

  18. Schook CC, Mulliken JB, Fishman SJ, Alomari AI, Grant FD, Greene AK. Differential diagnosis of lower extremity enlargement in pediatric patients referred with a diagnosis of lymphedema. Plast Reconstr Surg. 2011;127:1571–81.

    Article  CAS  Google Scholar 

  19. Maclellan RA, Couto RA, Sullivan JE, Grant FD, Slavin SA, Greene AK. Management of primary and secondary lymphedema: analysis of 225 referrals to a center. Ann Plast Surg. 2015 Aug;75(2):197–200.

    Article  CAS  Google Scholar 

  20. Avraham T, Yan A, Zampell JC, Daluvoy SV, Haimovitz-Friedman A, Cordeiro AP, et al. Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-beta1- mediated tissue fibrosis. Am J Physiol Cell Physiol. 2010;299:C589–605.

    Article  CAS  Google Scholar 

  21. Jackowski S, Janusch M, Fiedler E, Marsch WC, Ulbrich EJ, Gaisbauer G, et al. Radiogenic lymphangiogenesis in the skin. Am J Pathol. 2007;171:338–48.

    Article  Google Scholar 

  22. Gärtner R, Mejdahl MK, Andersen KG, Ewertz M, Kroman N. Development in self-reported arm lymphedema in Danish women treated for early stage breast cancer in 2005 and 2006 – a nationwide follow- up study. Breast. 2014;23:445.

    Article  Google Scholar 

  23. Hayes SB. Does axillary boost increase lymphedema compared with supraclavicular radiation alone after breast conservation? Int J Radiat Oncol Biol Phys. 2008;72:1449–55.

    Article  Google Scholar 

  24. Dayangac M, Makay O, Yeniay L, Aynaci M, Kapkac M, Yilmaz R. Precipitating factors for lymphedema following surgical treatment of breast cancer: implications for patients undergoing axillary lymph node dissection. Breast J. 2009;15:210–1.

    Article  Google Scholar 

  25. Yen TW, Fan X, Sparapani R, Laud PW, Walker AP, Nattinger AB. A contemporary, population-based study of lymphedema risk factors in older women with breast cancer. Ann Surg Oncol. 2009;16:979–88.

    Article  Google Scholar 

  26. Helyer LK, Varnic M, Le LW, Leong W, McCready D. Obesity is a risk factor for developing postoperative lymphedema in breast cancer patients. Breast J. 2010;16:48–54.

    Article  Google Scholar 

  27. Shaw C, Mortimer P, Judd PA. A randomized controlled trial of weight reduction as a treatment for breast cancer-related lymphedema. Cancer. 2007;110:1868–74.

    Article  Google Scholar 

  28. Greene AK, Grant FD, Slavin SA. Lower-extremity lymphedema and elevated body-mass index. N Engl J Med. 2012;366:2136–7.

    Article  CAS  Google Scholar 

  29. Johansson K, Branje E. Arm lymphoedema in a cohort of breast cancer survivors 10 years after diagnosis. Acta Oncol. 2010;49:166–73.

    Article  Google Scholar 

  30. Petrek JA, Senie RT, Peters M, Rosen PP. Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer. 2001;92:1368–77.

    Article  CAS  Google Scholar 

  31. McLaughlin SA, Wright MJ, Morris KT, et al. Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: patient perceptions and precautionary behaviors. J Clin Oncol. 2008;26:5220–8.

    Article  Google Scholar 

  32. Cormier JN, Askew RL, Mungovan KS, et al. Lymphedema beyond breast cancer: a systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer. 2010;116:5138–49.

    Article  Google Scholar 

  33. Vignes S, Arrault M, Dupuy A. Factors associated with increased breast cancer-related lymphedema volume. Acta Oncol. 2007;46:1138–42.

    Article  Google Scholar 

  34. Rudkin GH, Miller TA. Lipedema: a clinical entity distinct from lymphedema. Plast Reconstr Surg. 1994;94:841–7.

    Article  CAS  Google Scholar 

  35. Newman B, Lose F, Kedda MA, Francois M, Ferguson K, Janda M, et al. Possible genetic predisposition to lymphedema after breast cancer. Lymphat Res Biol. 2012;10:2–13.

    Article  CAS  Google Scholar 

  36. Miaskowski C, Dodd M, Paul SM, West C, Hamolsky D, Abrams G, et al. Lymphatic and angiogenic candidate genes predict the development of secondary lymphedema following breast cancer surgery. PLoS One. 2013;8:e60164.

    Article  CAS  Google Scholar 

  37. Sharma A, Schwartz RA. Stewart-Treves syndrome: pathogenesis and management. J Am Acad Dermatol. 2012;67:1342–8.

    Article  Google Scholar 

  38. Dayan JH, Dayan E, Smith ML. Reverse lymphatic mapping: a new technique for maximizing safety in vascularized lymph node transfer. Plast Reconstr Surg. 2015;135:277–85.

    Article  CAS  Google Scholar 

  39. Johnson AR, Kimball S, Epstein S, et al. Lymphedema incidence after axillary lymph node dissection: quantifying the impact of radiation and the lymphatic microsurgical preventive healing approach. Ann Plast Surg. 2019;82:S234–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark V. Schaverien or Joseph H. Dayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaverien, M.V., Dayan, J.H. (2022). Introduction. In: Schaverien, M.V., Dayan, J.H. (eds) Multimodal Management of Upper and Lower Extremity Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-030-93039-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93039-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93038-7

  • Online ISBN: 978-3-030-93039-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics