Skip to main content

\(\mathrm {RAC}\)-Drawability is \(\exists \mathbb {R}\)-Complete

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12868))

Included in the following conference series:

Abstract

A \(\mathrm {RAC}\) -drawing of a graph is a straight-line drawing in which every crossing occurs at a right-angle. We show that deciding whether a graph has a \(\mathrm {RAC}\)-drawing is as hard as the existential theory of the reals, even if we know that every edge is involved in at most ten crossings and even if the drawing is specified up to isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a thorough introduction to the existential theory of the reals, see [17]. For a quick intro, the Wikipedia page [25] will serve.

  2. 2.

    These results are from 2021. The Wikipedia page mentioned earlier [25] is host to a growing list of complete problems, many from the areas of graph drawing and computational geometry.

References

  1. Abrahamsen, M.: Covering polygons is even harder. ArXiv e-prints (2021). arXiv:2106.02335. Accessed 22 July 2021

  2. Angelini, P., et al.: On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl. 15(1), 53–78 (2011). https://doi.org/10.7155/jgaa.00217

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012). https://doi.org/10.7155/jgaa.00274

    Article  MathSciNet  MATH  Google Scholar 

  4. Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that admit right angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012). https://doi.org/10.1016/j.comgeo.2011.11.008

    Article  MathSciNet  MATH  Google Scholar 

  5. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theoret. Comput. Sci. 689, 48–57 (2017). https://doi.org/10.1016/j.tcs.2017.05.039

    Article  MathSciNet  MATH  Google Scholar 

  6. Bieker, N.: Complexity of graph drawing problems in relation to the existential theory of the reals. Bachelor’s thesis, Karlsruhe Institute of Technology (August 2020)

    Google Scholar 

  7. Boomari, H., Ostovari, M., Zarei, A.: Recognizing visibility graphs of triangulated irregular networks. Fundam. Informaticae 179(4), 345–360 (2021). https://doi.org/10.3233/FI-2021-2027

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theoret. Comput. Sci. 636, 1–16 (2016). https://doi.org/10.1016/j.tcs.2016.04.026

    Article  MathSciNet  MATH  Google Scholar 

  9. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 460–469. ACM, New York (1988). https://doi.org/10.1145/62212.62257

  10. Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs. J. Graph Algorithms Appl. 19(2), 681–706 (2015). https://doi.org/10.7155/jgaa.00375

    Article  MathSciNet  MATH  Google Scholar 

  11. Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 149–169. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_9

    Chapter  MATH  Google Scholar 

  12. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoret. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.2011.05.025

    Article  MathSciNet  MATH  Google Scholar 

  13. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 1–37 (2019). https://doi.org/10.1145/3301281

    Article  Google Scholar 

  14. Erickson, J., van der Hoog, I., Miltzow, T.: Smoothing the gap between NP and ER. In: 61st Annual Symposium on Foundations of Computer Science–FOCS 2020, pp. 1022–1033. IEEE Computer Society, Los Alamitos (2020). https://doi.org/10.1109/FOCS46700.2020.00099

  15. Förster, H., Kaufmann, M.: On compact RAC drawings. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 173, pp. 53:1–53:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.53

  16. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.2014.03.001

    Article  Google Scholar 

  17. Matoušek, J.: Intersection graphs of segments and \(\exists \mathbb{R}\). ArXiv e-prints (2014). arXiv:1406.2636. Accessed 10 June 2020

  18. Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.) Topology and Geometry—Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0082792

    Chapter  Google Scholar 

  19. Richter-Gebert, J.: Mnëv’s universality theorem revisited. Sém. Lothar. Combin., vol. 34 (1995)

    Google Scholar 

  20. Schaefer, M.: Picking planar edges; or, drawing a graph with a planar subgraph. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_2

    Chapter  MATH  Google Scholar 

  21. Schaefer, M.: RAC-drawability is \(\exists \mathbb{R}\)-complete. ArXiv e-prints (2021). arXiv:2107.11663v2. Accessed 28 July 2021

  22. Schaefer, M.: Complexity of geometric \(k\)-planarity for fixed \(k\). J. Graph Algorithms Appl. 25(1), 29–41 (2021). https://doi.org/10.7155/jgaa.00548

    Article  MathSciNet  MATH  Google Scholar 

  23. Schaefer, M.: On the complexity of some geometric problems with fixed parameters. J. Graph Algorithms Appl. 25(1), 195–218 (2021). https://doi.org/10.7155/jgaa.00557

    Article  MathSciNet  MATH  Google Scholar 

  24. Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Applied Geometry and Discrete Mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 531–554. Amer. Math. Soc., Providence, RI (1991)

    Google Scholar 

  25. Wikipedia Contributors: Existential theory of the reals – Wikipedia, the free encyclopedia (2021). https://en.wikipedia.org/w/index.php?title=Existential_theory_of_the_reals. Accessed 28 May 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Schaefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaefer, M. (2021). \(\mathrm {RAC}\)-Drawability is \(\exists \mathbb {R}\)-Complete. In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92931-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92930-5

  • Online ISBN: 978-3-030-92931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics