Abstract
A \(\mathrm {RAC}\) -drawing of a graph is a straight-line drawing in which every crossing occurs at a right-angle. We show that deciding whether a graph has a \(\mathrm {RAC}\)-drawing is as hard as the existential theory of the reals, even if we know that every edge is involved in at most ten crossings and even if the drawing is specified up to isomorphism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
These results are from 2021. The Wikipedia page mentioned earlier [25] is host to a growing list of complete problems, many from the areas of graph drawing and computational geometry.
References
Abrahamsen, M.: Covering polygons is even harder. ArXiv e-prints (2021). arXiv:2106.02335. Accessed 22 July 2021
Angelini, P., et al.: On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl. 15(1), 53–78 (2011). https://doi.org/10.7155/jgaa.00217
Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012). https://doi.org/10.7155/jgaa.00274
Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that admit right angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012). https://doi.org/10.1016/j.comgeo.2011.11.008
Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theoret. Comput. Sci. 689, 48–57 (2017). https://doi.org/10.1016/j.tcs.2017.05.039
Bieker, N.: Complexity of graph drawing problems in relation to the existential theory of the reals. Bachelor’s thesis, Karlsruhe Institute of Technology (August 2020)
Boomari, H., Ostovari, M., Zarei, A.: Recognizing visibility graphs of triangulated irregular networks. Fundam. Informaticae 179(4), 345–360 (2021). https://doi.org/10.3233/FI-2021-2027
Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theoret. Comput. Sci. 636, 1–16 (2016). https://doi.org/10.1016/j.tcs.2016.04.026
Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 460–469. ACM, New York (1988). https://doi.org/10.1145/62212.62257
Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs. J. Graph Algorithms Appl. 19(2), 681–706 (2015). https://doi.org/10.7155/jgaa.00375
Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 149–169. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_9
Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoret. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.2011.05.025
Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 1–37 (2019). https://doi.org/10.1145/3301281
Erickson, J., van der Hoog, I., Miltzow, T.: Smoothing the gap between NP and ER. In: 61st Annual Symposium on Foundations of Computer Science–FOCS 2020, pp. 1022–1033. IEEE Computer Society, Los Alamitos (2020). https://doi.org/10.1109/FOCS46700.2020.00099
Förster, H., Kaufmann, M.: On compact RAC drawings. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 173, pp. 53:1–53:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.53
Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.2014.03.001
Matoušek, J.: Intersection graphs of segments and \(\exists \mathbb{R}\). ArXiv e-prints (2014). arXiv:1406.2636. Accessed 10 June 2020
Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.) Topology and Geometry—Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0082792
Richter-Gebert, J.: Mnëv’s universality theorem revisited. Sém. Lothar. Combin., vol. 34 (1995)
Schaefer, M.: Picking planar edges; or, drawing a graph with a planar subgraph. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_2
Schaefer, M.: RAC-drawability is \(\exists \mathbb{R}\)-complete. ArXiv e-prints (2021). arXiv:2107.11663v2. Accessed 28 July 2021
Schaefer, M.: Complexity of geometric \(k\)-planarity for fixed \(k\). J. Graph Algorithms Appl. 25(1), 29–41 (2021). https://doi.org/10.7155/jgaa.00548
Schaefer, M.: On the complexity of some geometric problems with fixed parameters. J. Graph Algorithms Appl. 25(1), 195–218 (2021). https://doi.org/10.7155/jgaa.00557
Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Applied Geometry and Discrete Mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 531–554. Amer. Math. Soc., Providence, RI (1991)
Wikipedia Contributors: Existential theory of the reals – Wikipedia, the free encyclopedia (2021). https://en.wikipedia.org/w/index.php?title=Existential_theory_of_the_reals. Accessed 28 May 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Schaefer, M. (2021). \(\mathrm {RAC}\)-Drawability is \(\exists \mathbb {R}\)-Complete. In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-92931-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92930-5
Online ISBN: 978-3-030-92931-2
eBook Packages: Computer ScienceComputer Science (R0)