Skip to main content

A Supervisory Control and Data Acquisition System Filtering Approach for Alarm Management with Deep Learning

  • Conference paper
  • First Online:
International Conference on Intelligent Emerging Methods of Artificial Intelligence & Cloud Computing (IEMAICLOUD 2021)

Abstract

Wind energy is one of the most relevant renewable energy. The maintenance of wind turbines is essential to ensure reduced operation and maintenance costs. Supervisory control and data acquisition system acquires large volumes of data from different condition monitoring systems. Artificial intelligence algorithms are employed to obtain reliable information, although redundant information is usually employed decreasing the validity of the results. It is proposed an approach based on data reduction employing data filtering, correlation, principal component analysis to reduce redundant information introduced in neural networks. A real case study is proposed with data from real win turbine is used to develop a case study analyzing one critical alarm. The results obtained prove the validity of the methodology, reducing the initial dataset and increasing the reliability of the neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F.Z. Joyce Lee, Global wind report; Global Wind Energy Council (2020)

    Google Scholar 

  2. F. García Márquez, A. Pliego Marugán, J. Pinar Pérez, S. Hillmansen, M. Papaelias, Optimal dynamic analysis of electrical/electronic components in wind turbines. Energies 10, 1111 (2017)

    Article  Google Scholar 

  3. P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui, T.A. Tameghe, G. Ekemb, Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies 7, 2595–2630 (2014)

    Article  Google Scholar 

  4. C.A. Walford, Wind turbine reliability: Understanding and minimizing wind turbine operation and maintenance costs. Sandia National Laboratories (2006)

    Google Scholar 

  5. A. Pliego Marugán, F.P. García Márquez, J. Lorente, Decision making process via binary decision diagram. Int. J. Manag. Sci. Eng. Manag. 10, 3–8 (2015)

    Google Scholar 

  6. F.G. Marquez, An approach to remote condition monitoring systems management. (2006)

    Google Scholar 

  7. F.P. Garcia Marquez, C.Q. Gomez Munoz, A new approach for fault detection, location and diagnosis by ultrasonic testing. Energies 13, 1192 (2020)

    Google Scholar 

  8. A.H. Butt, B. Akbar, J. Aslam, N. Akram, M.E.M Soudagar, F.P. García Márquez, M. Younis, E. Uddin, Development of a linear acoustic array for aero-acoustic quantification of camber-bladed vertical axis wind turbine. Sensors 20, 5954 (2020)

    Google Scholar 

  9. Z. Liu, C. Xiao, T. Zhang, X. Zhang, Research on fault detection for three types of wind turbine subsystems using machine learning. Energies 13, 460 (2020)

    Article  Google Scholar 

  10. C.Q. Gómez Muñoz, F.P. García Marquez, B. Hernandez Crespo, K. Makaya, Structural health monitoring for delamination detection and location in wind turbine blades employing guided waves. Wind Energy 22, 698–711 (2019)

    Article  Google Scholar 

  11. J.M.P. Pérez, F.P.G. Márquez, A. Tobias, M. Papaelias, Wind turbine reliability analysis. Renew. Sustain. Energy Rev. 23, 463–472 (2013)

    Article  Google Scholar 

  12. F.P.G. Márquez, A.M.P. Chacón, A review of non-destructive testing on wind turbines blades. Renew. Energy (2020)

    Google Scholar 

  13. A. Pliego Marugán, F.P. Garcia Marquez, B. Lev, Optimal decision-making via binary decision diagrams for investments under a risky environment. Int. J. Prod. Res. 55, 5271–5286 (2017)

    Article  Google Scholar 

  14. F.P. García Márquez, I. Segovia Ramírez, B. Mohammadi-Ivatloo, A.P. Marugán, Reliability dynamic analysis by fault trees and binary decision diagrams. Information 11, 324 (2020)

    Google Scholar 

  15. I. Segovia Ramirez, B. Mohammadi-Ivatloo, F.P. Garcia Marquez, Alarms management by supervisory control and data acquisition system for wind turbines. Eksploatacja I Niezawodnosc-Maintenance Reliability 23, 110–116 (2021)

    Article  Google Scholar 

  16. A. Pliego Marugán, F.P. García Márquez, Advanced analytics for detection and diagnosis of false alarms and faults: A real case study. Wind Energy 22, 1622–1635 (2019)

    Article  Google Scholar 

  17. A. Pliego Marugán, A.M. Peco Chacón, F.P. García Márquez, Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines. Reliab. Eng. Syst. Saf. 191, 106574 (2019)

    Google Scholar 

  18. F.P.G. Márquez, A new method for maintenance management employing principal component analysis. Struct. Durab. Health Monit. 6, 89 (2010)

    Google Scholar 

  19. I.S. Ramirez, F.P.G. Marquez, In Supervisory control and data acquisition analysis for wind turbine maintenance management, in International Conference on Management Science and Engineering Management, 2020; Springer, pp. 470–480

    Google Scholar 

  20. F.P. Garcia Marquez, A. Pliego Marugan, J.M. Pinar Perez, S. Hillmansen, M. Papaelias, Optimal dynamic analysis of electrical/electronic components in wind turbines. Energies 10, 1111 (2017)

    Article  Google Scholar 

  21. F.P. García Márquez, I. Segovia Ramírez, A. Pliego Marugán, Decision making using logical decision tree and binary decision diagrams: A real case study of wind turbine manufacturing. Energies 12, 1753 (2019)

    Article  Google Scholar 

  22. A.A. Jiménez, L. Zhang, C.Q.G. Muñoz, F.P.G. Márquez, Maintenance management based on machine learning and nonlinear features in wind turbines. Renew. Energy 146, 316–328 (2020)

    Article  Google Scholar 

  23. S. Sridhar, K.U. Rao, R. Umesh, K. Harish, In Condition monitoring of induction motor using statistical processing, in 2016 IEEE Region 10 Conference (TENCON), 2016; IEEE: pp. 3006–3009

    Google Scholar 

  24. J. Garrett, J. Where and why artificial neural networks are applicable in civil engineering (1994)

    Google Scholar 

  25. A.A. Jiménez, C.Q.G. Muñoz, F.P.G. Márquez, Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers. Reliab. Eng. Syst. Saf. 184, 2–12 (2019)

    Article  Google Scholar 

  26. A.M.P. Chacón, I.S. Ramírez, F.P.G. Márquez, False alarms analysis of wind turbine bearing system. Sustainability 12, 7867 (2020)

    Article  Google Scholar 

  27. A. Kusiak, A. Verma, Analyzing bearing faults in wind turbines: A data-mining approach. Renew. Energy 48, 110–116 (2012)

    Article  Google Scholar 

  28. A.P. Marugán, A.M.P. Chacón, F.P.G. Márquez, Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines. Reliab. Eng. Syst. Saf. 191, 106574 (2019)

    Google Scholar 

  29. A. Adouni, D. Chariag, D. Diallo, M. Ben Hamed, L. Sbita, Fdi based on artificial neural network for low-voltage-ride-through in dfig-based wind turbine. ISA Trans. 64, 353–364 (2016)

    Article  Google Scholar 

  30. S. Han, J. Pool, J. Tran, W. Dally, In Learning both weights and connections for efficient neural network, in Advances in neural information processing systems, pp. 1135–1143 (2015)

    Google Scholar 

  31. M. Schlechtingen, I. Ferreira Santos, Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection. Mech. Syst. Signal Process. 25, 1849–1875 (2011)

    Article  Google Scholar 

  32. R.J. Feise, Do multiple outcome measures require p-value adjustment? BMC Med. Res. Methodol. 2, 8 (2002)

    Article  Google Scholar 

  33. F.G. Marquez, An approach to remote condition monitoring systems management, in IET International Conference on Railway Condition Monitoring, pp. 156–160 (2006)

    Google Scholar 

Download references

Acknowledgements

The work reported herewith has been financially by the Dirección General de Universidades, Investigación e Innovación of Castilla-La Mancha, under Research Grant ProSeaWind project (Ref.: SBPLY/19/180501/000102)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Segovia Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Segovia Ramírez, I., Bernalte Sánchez, P.J., García Márquez, F.P. (2022). A Supervisory Control and Data Acquisition System Filtering Approach for Alarm Management with Deep Learning. In: García Márquez, F.P. (eds) International Conference on Intelligent Emerging Methods of Artificial Intelligence & Cloud Computing. IEMAICLOUD 2021. Smart Innovation, Systems and Technologies, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-030-92905-3_10

Download citation

Publish with us

Policies and ethics