Skip to main content

Searching for Orthogonal Latin Squares via Cells Mapping and BOINC-Based Cube-and-Conquer

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2021)

Abstract

This study focuses on searching for pairs of orthogonal diagonal Latin squares of order 10. Consider a cells mapping in accordance to which one diagonal Latin square is mapped to another one. Given a certain cells mapping schema, the problem is to find a pair of orthogonal diagonal Latin squares of order 10 such that they match the schema (or to prove that such a pair does not exist). The problem is reduced to the Boolean satisfiability problem (SAT). Three mapping schemes are considered, and for each of them a SAT instance is constructed. If a satisfying assignment is found for an instance, the corresponding pair of orthogonal Latin squares can be easily extracted from it. The Cube-and-Conquer approach is used to solve the instances. The cubing phase is performed on a sequential look-ahead SAT solver, while on the conquer phase an experiment in a BOINC-based volunteer computing project is launched. In the experiment, for two out of three schemes orthogonal pairs are found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://oeis.org/A299784.

  2. 2.

    https://oeis.org/A309210.

  3. 3.

    https://github.com/Nauchnik/SAT-at-home/tree/master/src_boinc_satcmsdls.

References

  1. Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2006), Singapore, 16–19 May 2006, pp. 73–80. IEEE Computer Society (2006)

    Google Scholar 

  2. Cerin, C., Fedak, G.: Desktop Grid Computing, 1st edn. Chapman & Hall/CRC, Boca Raton (2012)

    MATH  Google Scholar 

  3. Anderson, D.P.: BOINC: a platform for volunteer computing. J. Grid Comput. 18(1), 99–122 (2020). https://doi.org/10.1007/s10723-019-09497-9

    Google Scholar 

  4. Ivashko, E., Chernov, I., Nikitina, N.: A survey of desktop grid scheduling. IEEE Trans. Parallel Distrib. Syst. 29(12), 2882–2895 (2018)

    Google Scholar 

  5. Yakimets, V., Kurochkin, I.: Roadmap for improving volunteer distributed computing project performance. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2019. CCIS, vol. 1129, pp. 690–700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36592-9_56

    Google Scholar 

  6. Colbourn, C., et al.: Latin squares. In: Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications, 2nd edn, pp. 224–265. Chapman and Hall/CRC (2006)

    Google Scholar 

  7. McKay, B.D., Meynert, A., Myrvold, W.: Small Latin squares, quasigroups, and loops. J. Comb. Des. 15(2), 98–119 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Egan, J., Wanless, I.M.: Enumeration of MOLS of small order. Math. Comput. 85(298), 799–824 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, H.: Combinatorial designs by SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 533–568. IOS Press (2009)

    Google Scholar 

  10. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS Press (2009)

    Google Scholar 

  11. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 155–184. IOS Press (2009)

    Google Scholar 

  12. Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-Conquer for satisfiability. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 31–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3_2

    Google Scholar 

  13. Brown, J., Cherry, F., Most, L., Parker, E., Wallis, W.: Completion of the spectrum of orthogonal diagonal Latin squares. In: Lecture Notes in Pure and Applied Mathematics, vol. 139, pp. 43–49 (1992)

    Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Algorithms. Addison-Wesley Professional (2013)

    Google Scholar 

  15. Vatutin, E., Nikitina, N., Belyshev, A., Manzyuk, M.: On polynomial reduction of problems based on diagonal Latin squares to the exact cover problem. In: Bychkov, I.V., Tchernykh, A., Feoktistov, A.G. (eds.) Proceedings of the 2nd International Workshop on Information, Computation, and Control Systems for Distributed Environments (ICCS-DE 2020). CEUR Workshop Proceedings, vol. 2638, pp. 289–297 (2020)

    Google Scholar 

  16. Knuth, D.E.: Dancing links. In: Millenial Perspectives in Computer Science, pp. 187–214 (2000)

    Google Scholar 

  17. Brayton, R., Coppersmith, D., Hoffman, A.: Self-orthogonal Latin squares of all orders \(n \ne 2,3,6\). Bull. Am. Math. Soc. 80, 116–118 (1974)

    MathSciNet  MATH  Google Scholar 

  18. Vatutin, E., Belyshev, A.: Enumerating the orthogonal diagonal Latin squares of small order for different types of orthogonality. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2020. CCIS, vol. 1331, pp. 586–597. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64616-5_50

    Google Scholar 

  19. Appa, G., Mourtos, I., Magos, D.: Integrating constraint and integer programming for the orthogonal Latin squares problem. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 17–32. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3_2

    Google Scholar 

  20. Rubin, N., Bright, C., Cheung, K.K.H., Stevens, B.: Integer and constraint programming revisited for mutually orthogonal Latin squares. CoRR arXiv:2103.11018 (2021)

  21. Bright, C., Gerhard, J., Kotsireas, I., Ganesh, V.: Effective problem solving using SAT solvers. In: Gerhard, J., Kotsireas, I. (eds.) MC 2019. CCIS, vol. 1125, pp. 205–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41258-6_15

    Google Scholar 

  22. Bogart, K.P.: Introductory Combinatorics, 2nd edn. Harcourt Brace Jovanovich, San Diego (1990)

    MATH  Google Scholar 

  23. Vatutin, E., Belyshev, A., Kochemazov, S., Zaikin, O., Nikitina, N.: Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 578–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05807-4_49

    Google Scholar 

  24. Sloane, N.J.A.: An on-line version of the encyclopedia of integer sequences. Electr. J. Comb. 1, 1–5 (1994)

    Google Scholar 

  25. Vatutin, E., Titov, V., Zaikin, O., Kochemazov, S., Manzuk, M., Nikitina, N.: Orthogonality-based classification of diagonal Latin squares of order 10. In: Proceedings of the VIII International Conference on Distributed Computing and Grid-Technologies in Science and Education (GRID 2018). CEUR Workshop Proceedings, vol. 2267, pp. 282–287 (2018)

    Google Scholar 

  26. Vatutin, E., Belyshev, A., Zaikin, O., Nikitina, N., Manzyuk, M.: Investigating properties of generalized symmetries in diagonal Latin squares using volunteer computing. High-Perform. Comput. Syst. Technol. 3(2), 39–51 (2019). (in Russian)

    Google Scholar 

  27. Manzyuk, M., Nikitina, N., Vatutin, E.: Start-up and the results of the volunteer computing project RakeSearch. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2019. CCIS, vol. 1129, pp. 725–734. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36592-9_59

    Google Scholar 

  28. Kochemazov, S., Zaikin, O., Vatutin, E., Belyshev, A.: Enumerating diagonal Latin squares of order up to 9. J. Integer Sequences 23(1), 1–21 (2020). Article 20.1.2

    Google Scholar 

  29. Vatutin, E., Zaikin, O., Kochemazov, S., Valyaev, S.: Using volunteer computing to study some features of diagonal Latin squares. Open Eng. 7, 453–460 (2017)

    Google Scholar 

  30. Balyo, T., Sinz, C.: Parallel satisfiability. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 3–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3_1

    Google Scholar 

  31. Kochemazov, S., Zaikin, O., Semenov, A.: The comparison of different SAT encodings for the problem of search for systems of orthogonal Latin squares. In: International Conference Mathematical and Information Technologies - MIT 2016. CEUR Workshop Proceedings, vol. 1839, pp. 155–165 (2017)

    Google Scholar 

  32. Lynce, I., Ouaknine, J.: Sudoku as a SAT problem. In: International Symposium on Artificial Intelligence and Mathematics, ISAIM 2006, Fort Lauderdale, Florida, USA, 4–6 January 2006 (2006)

    Google Scholar 

  33. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Competition 2020 - Solver and Benchmark Descriptions. Department of Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

    Google Scholar 

  34. Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: implementing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_26

    Google Scholar 

  35. Kurochkin, I.: The umbrella project of volunteer distributed computing Optima@home. In: Ivahsko, E., Rumyantsev, A. (eds.) Proceedings of the Third International Conference BOINC-Based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). CEUR Workshop Proceedings, vol. 1973, pp. 35–42 (2017)

    Google Scholar 

  36. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Google Scholar 

  37. Biró, C., Kovásznai, G., Biere, A., Kusper, G., Geda, G.: Cube-and-Conquer approach for SAT solving on grids. Ann. Math. Inform. 42, 9–21 (2013)

    MathSciNet  Google Scholar 

  38. Heisinger, M., Fleury, M., Biere, A.: Distributed cube and conquer with Paracooba. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 114–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_9

    MATH  Google Scholar 

  39. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15

    MATH  Google Scholar 

  40. Bright, C., Cheung, K.K.H., Stevens, B., Kotsireas, I.S., Ganesh, V.: A SAT-based resolution of Lam’s problem. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, pp. 3669–3676. AAAI Press (2021)

    Google Scholar 

  41. Fang, W., Beckert, U.: Parallel tree search in volunteer computing: a case study. J. Grid Comput. 16(4), 647–662 (2018). https://doi.org/10.1007/s10723-017-9411-5

    Google Scholar 

  42. Ignatov, A., Posypkin, M.: BOINC-based branch-and-bound. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 511–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05807-4_43

    Google Scholar 

  43. Semenov, A., Zaikin, O., Kochemazov, S.: Finding effective SAT Partitionings via black-box optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. SOIA, vol. 170, pp. 319–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66515-9_11

    MATH  Google Scholar 

  44. Afanasiev, A.P., Bychkov, I.V., Zaikin, O.S., Manzyuk, M.O., Posypkin, M.A., Semenov, A.A.: Concept of a multitask grid system with a flexible allocation of idle computational resources of supercomputers. J. Comput. Syst. Sci. Int. 56(4), 701–707 (2017). https://doi.org/10.1134/S1064230717040025

    Google Scholar 

  45. Vatutin, E.I., Kochemazov, S.E., Zaikin, O.S.: Applying volunteer and parallel computing for enumerating diagonal Latin squares of order 9. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 114–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5_9

    Google Scholar 

Download references

Acknowledgements

Authors thank all RakeSearch and Gerasim@home volunteers, whose computers took part in the experiments. Oleg Zaikin was supported by EPSRC grant EP/S015523/1. Eduard Vatutin was supported by intra-university grant for SWSU development program (Priority 2030) No. PR2030/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Zaikin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vatutin, E., Zaikin, O., Manzyuk, M., Nikitina, N. (2021). Searching for Orthogonal Latin Squares via Cells Mapping and BOINC-Based Cube-and-Conquer. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2021. Communications in Computer and Information Science, vol 1510. Springer, Cham. https://doi.org/10.1007/978-3-030-92864-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92864-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92863-6

  • Online ISBN: 978-3-030-92864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics