Skip to main content

The Imprint of Quaternary Processes on the Austrian Landscape

  • Chapter
  • First Online:
Landscapes and Landforms of Austria

Part of the book series: World Geomorphological Landscapes ((WGLC))

Abstract

Austria has a diverse landscape as a result of the interplay of processes linked to tectonics and climate change. The final shaping occurred during the Quaternary (the last 2.58 Ma). This period is characterized by strong climatic variations on the global scale between glacial and interglacial conditions, which had different effects on the heterogeneous landscape, and its archives depending on the magnitude and duration of the climatic signal. The tectonic influence during the Quaternary is evident in instances of uplift as indicated by the Pleistocene terrace staircases of the Alpine foreland. In contrast, parts of the Vienna basin are characterized by subsidence linked to strike-slip faults. The oldest deposits are loess–palaeosol sequences (LPSs) which document the onset of loess accumulation with the occurrence of the Gauss/Matuyama palaeomagnetic reversal at the beginning of the Quaternary. The Early Pleistocene record consists of LPSs and gravel deposits with no indication of a glacier advance. Four major glaciations, namely Günz, Mindel, Riss and Würm (from oldest to youngest)—are known. These Ice Ages were characterized by a large complex of transection glaciers, i.e. an interconnected system of valley glaciers covering large sections of the Eastern Alps with glacier tongues terminating in the Alpine foreland. The three older glaciations are of Middle Pleistocene age, whereas the youngest happened during the Late Pleistocene. All four glaciations are recorded by Glacial Sequences genetically linking tongue basins with (subglacial) till, terminal moraine deposits and terraces consisting of proglacial outwash. Sediments of these glaciations differ in the degree of weathering and the characteristics of cover beds (e.g. LPSs). Based on geochronological data and the relation between type and magnitude of the global climate signal, the amount of reconstructed sediment production following correlation with major phases of global glaciation is used: Günz (MIS 16; 676–621 ka), Mindel (MIS 12; 478–424 ka), Riss (MIS 6; 191–130 ka) and (Late) Würm (MIS 2; 29–12 ka). Detailed knowledge of the Last Interglacial-Glacial cycle (130–12 ka) allows establishing models for climatically controlled sedimentary processes and for glacier expansion in the longitudinal valleys of the Eastern Alps. Overdeepened valleys and increased relief leading to different types of mass movements are also a legacy of glaciations. Evidence of Pleistocene permafrost (e.g. relict rock glaciers) as well as Holocene fluvial activity are further indications of the dynamic landscape development of the Austrian landscape during the Quaternary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen KK, Svensson A, Johnsen SJ et al (2006) The greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quatern Sci Rev 25:3246–3257

    Google Scholar 

  • Auer I, Foelsche U, Böhm R et al (2014) Kapitel 3: Vergangene Klimaänderung in Österreich. In: Kromp-Kolb H et al (eds) Österreichischer Sachstandsbericht Klimawandel 2014. Verlag der Österreichischen Akademie der Wissenschaften, Vienna, pp 228–299

    Google Scholar 

  • Baroň I, Plan L, Sokol L, Grasemann B et al (2019) Present-day kinematic behaviour of active faults in the Eastern Alps. Tectonophysics 752:1–23

    Google Scholar 

  • Barrett S, Starnberger R, Tjallingii R et al (2017) The sedimentary history of the inner-alpine Inn Valley, Austria: extending the Baumkirchen type section further back in time with new drilling. J Quat Sci 32(1):63–79

    Google Scholar 

  • Barrett SJ, Drescher-Schneider R, Starnberger R et al (2018) Evaluation of the regional vegetation and climate in the Eastern Alps (Austria) during MIS 3–4 based on pollen analysis of the classical Baumkirchen paleolake sequence. Quat Res 90:153–163

    Google Scholar 

  • Becker B (1982) Dendrochronologie und Paläoökologie subfossiler Baumstämme aus Flussablagerungen. Ein Beitrag zur nacheiszeitlichen Auenentwicklung im südlichen Mitteleuropa. Mitt. Komm. Quartärforschg. Österr Akad Wiss 5:1–120, Wien

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Google Scholar 

  • Bichler MG, Reindl M, Reitner JM et al (2016) Landslide deposits as stratigraphical markers for a sequence-based glacial stratigraphy: a case study of a Younger Dryas system in the Eastern Alps. Boreas 45(3):537–551

    Google Scholar 

  • Bickel L, Lüthgens C, Lomax J et al (2015a) Luminescence dating of glaciofluvial deposits linked to the penultimate glaciation in the Eastern Alps. Quat Int 357:110–124

    Google Scholar 

  • Bickel L, Lüthgens C, Lomax J et al (2015b) The timing of the penultimate glaciation in the northern Alpine Foreland: new insights from luminescence dating. Proc Geol Assoc 126(4–5):536–550

    Google Scholar 

  • Bobek H (1935) Die jüngere Geschichte der Inntalterrasse und der Rückzug der letzten Vergletscherung im Inntal. Jb Geol BA 85:135–189

    Google Scholar 

  • Bortenschlager I, Bortenschlager S (1978) Pollenanlytische Untersuchungen am Bänderton von Baumkirchen. Z Gletscherk Glazialgeol 14:95–103

    Google Scholar 

  • Bortenschlager S, Oeggl K (eds) (2000) The Iceman and his natural environment: palaeobotanical results, vol 4. Springer, Wien, New York

    Google Scholar 

  • Braumann SM, Neuhuber S, Fiebig M et al (2018) Challenges in constraining ages of fluvial terraces in the Vienna Basin (Austria) using combined isochron burial and pIRIR225 luminescence dating. Quat Int. https://doi.org/10.1016/j.quaint.2018.01.009

    Article  Google Scholar 

  • Buchenauer HW (1990) Gletscher- und Blockgletschergeschichte der westlichen Schobergruppe (Osttirol). Marburger Geographische Schriften 117:1–276

    Google Scholar 

  • Burschil T, Tanner DC, Reitner JM et al (2019) Unravelling the shape and stratigraphy of a glacially-overdeepened valley with reflection seismic: the Lienz Basin (Austria). Swiss J Geosci 112(2–3):341–355. https://doi.org/10.1007/s00015-019-00339-0

    Article  Google Scholar 

  • Castiglioni GB (1964) Osservazioni sui depositi quatemari di Scives (Bressanone, Alto Adige) e su alcuni fenomeni di defor­ mazione in strati argilosi. Studi Trentini Di Scienze Naturali 1:3–24

    Google Scholar 

  • Chaline J, Jerz H (1984) Arbeitsergebnisse der Subkommission für Europäische Quartärstratigraphie. Stratotypen Des Würm-Glazials. Eiszeitalt Ggw 35:185–206

    Google Scholar 

  • Champagnac JD, Molnar P, Anderson RS et al (2007) Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35(3):195–198

    Google Scholar 

  • de Jong MGG, de Graaff LWS, Rupke J (1995) Der Eisabbau im Vorderen Bregenzerwald und in den Nachbargebieten (Vorarlberg, Österreich; Bayern, Deutschland) nach dem letzteiszeitlichen Eishochstand. J Geol B-A 138(1):27–54

    Google Scholar 

  • Decker K, Peresson H, Hinsch R (2005) Active tectonics and quaternary basin formation along the Vienna Basin transform fault. Quat Sci Rev 24(3–4):305–320

    Google Scholar 

  • Doneus M, Scharrer G, Neubauer W (2001) Archäologische Prospektion der Landschaft Carnuntum. Möglichkeiten Der Luftbildarchäologie Carnuntum Jahrbuch 2000:53–72

    Google Scholar 

  • Draxler I (1977) Pollenanalytische Untersuchungen von Mooren zur spät-und postglazialen Vegetationsgeschichte im Einzugsgebiet der Traun. JbGeol BA 120(1):131–163

    Google Scholar 

  • Draxler I (1987) Zur Vegetationsgeschichte und Stratigraphie des Würmspätglazials des Traungletschergebietes. Mitt Komm Quartärforsch Österr Akad Wiss 7:37–49

    Google Scholar 

  • Draxler I, van Husen D (1991) Ein 14C-datiertes Profil in der Niederterrasse bei Neurath (Stainz, Stmk.) Z Gletscherk Glazialgeol 25:123–130

    Google Scholar 

  • Draxler I (2000) Pollenanalytische Untersuchung der schieferkohleführenden Sedimentfolge von Nieselach bei St. Stefan im unteren Gailtal, Kärnten. Mitt. Komm Quartärforsch Österr Akad Wiss 12:155–179, Wien

    Google Scholar 

  • Drescher-Schneider R (2000) Die Vegetations- und Klimaentwicklung im Riß/Würm-Interglazial und im Früh- und Mittelwürm in der Umgebung von Mondsee: Ergebnisse der pollenanalytischen Untersuchungen. Mitt. Komm Quartärforsch Österr Akad Wiss 12:39–92, Wien

    Google Scholar 

  • Drescher-Schneider R, Kellerer-Pirklbauer A (2008) Gletscherschwund einst und heute—Neue Ergebnisse zur holozänen Vegetations- und Gletschergeschichte der Pasterze (Hohe Tauern, Österreich). Abh Geol BA 62:45–51

    Google Scholar 

  • Egger H (1996) Geologische Karte der Republik Österreich 1:50,000, Blatt 66 Gmunden Geologische Bundesanstalt, Wien

    Google Scholar 

  • Egger H (2007) Erläuterungen zu Blatt 66 Gmunden. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Ehlers J, Gibbard PL, Hughes, PD (eds) (2011) Quaternary glaciations-extent and chronology: a closer look. Developments in Quaternary Science 15). Elsevier

    Google Scholar 

  • Eppensteiner W, van Husen D, Krzemien R (1973) Beobachtungen an pleistozänen Driftblöcken des Marchfeldes. Verh. Geol BA 1973:331–336

    Google Scholar 

  • Fink J (1956) Zur Korrelation der Terrassen und Lösse in Österreich. Eiszeitalt Ggw 7:49–77

    Google Scholar 

  • Fink J, Kukla GJ (1977) Pleistocene climates in Central Europe: at least 17 interglacials after the Olduvai event. Quat Res 7(3):363–371

    Google Scholar 

  • Fink J, Fischer H, Klaus W et al (1976) Exkursion durch den österreichischen Teil des nördlichen Alpenvorlandes und den Donauraum zwischen Krems und Wiener Pforte. Mitt Komm Quartärforsch Österr Akad Wiss 1:1–113

    Google Scholar 

  • Fliri F (1973) Beiträge zur Geschichte der alpinen Würmvereisung: Forschungen am Bänderton von Baumkirchen (Inntal, Nordtirol). Z Geomorph Suppl 16:1–14

    Google Scholar 

  • Fliri F (1978) Die Stellung des Bändertonvorkommens von Schabs (Südtirol) in der alpinen Würm-Chronologie. Z Gletscherk Glazialgeol 14:115–118

    Google Scholar 

  • Fliri F (1988) Die Schottergrube von Albeins bei Brixen, eine neue Schlüsselstelle zur Kenntnis der Chronologie der Würmvereisung in Südtirol. Z Gletscherk Glazialgeol 24:137–142

    Google Scholar 

  • Fliri F, Bortenschlager S, Felber H et al (1970) Der Bänderton von Baumkirchen (Inntal, Tirol). Eine neue Schlüsselstelle zur Kenntnis de Würmvereisung der Alpen. Z Gletscherk Glazialgeol 6:5–35

    Google Scholar 

  • Frank C, Rabeder G (1997) Stranzendorf. In: Döppes D, Rabeder G (eds) Pliozäne und Pleistozäne Faunen Österreichs. Mitt Komm Quartärforsch Österr Akad Wiss 10:130–139

    Google Scholar 

  • Frechen M, Oches EA, Kohfeld KE (2003) Loess in Europe—mass accumulation rates during the last glacial period. Quat Sci Rev 22(18–19):1835–1857

    Google Scholar 

  • Frenzel B, Pesci M, Velichko AA (1992) Atlas of paleoclimates of the Northern Hemisphere: late pleistocene-holocene. Fischer, Stuttgart

    Google Scholar 

  • Gassner V, Jilek S, Ladstätter S (2002) Am Rande des Reiches. Die Römer in Österreich. In: Wolfram H (ed) Österreichische Geschichte 15 v. Chr. – 378 n. Chr., Carl Ueberreuter, Vienna, p 488

    Google Scholar 

  • Gibbard PL, Head MJ, Walker MJC et al (2010) Formal ratification of the quaternary system/period and the pleistocene series/Epoch with a base at 2.58 Ma. J Quat Sci 25:96–102

    Google Scholar 

  • Gilck F, Poschlod P (2019) The origin of alpine farming: a review of archaeological, linguistic and archaeobotanical studies in the Alps. The Holocene 29(9):1503–1511

    Google Scholar 

  • Gild C, Geitner C, Sanders D (2018) Discovery of a landscape-wide drape of late-glacial aeolian silt in the western Northern Calcareous Alps (Austria): first results and implications. Geomorphology 301:39–52

    Google Scholar 

  • Grischott R, Kober F, Lupker M et al (2017) Millennial scale variability of denudation rates for the last 15 kyr inferred from the detrital 10Be record of Lake Stappitz in the Hohe Tauern massif Austrian Alps. The Holocene 27(12):1914–1927

    Google Scholar 

  • Grüger E (1979) Spätriß, Riß/Würm und Frühwürm am Samerberg in Oberbayern–ein vegetationsgeschichtlicher Beitrag zur Gliederung des Jungpleistozäns. Geologica Bavarica 80:5–64

    Google Scholar 

  • Harrison SP, Kohfeld KE, Roelandt C et al (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Sci Rev 54(1–3):43–80

    Google Scholar 

  • Head MJ, Gibbard PL (2005) Early-Middle Pleistocene transitions: an overview and recommendation for the defining boundary. Geol Soc Spec Publ 247(1):1–18

    Google Scholar 

  • Heiri O, Koinig KA, Spötl C et al (2014) Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands. Quat Sci Rev 106:186–205

    Google Scholar 

  • Hintersberger E, Decker K, Lomax J et al (2018) Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria) for seismic hazard assessment. Nat Hazards Earth Syst Sci 18(2):531–553

    Google Scholar 

  • Höggerl N (2007) Höhenänderungen in Österreich. In: Hofmann T, Schönlaub HP (eds) Geo-Atlas Österreich: Die Vielfalt des geologischen Untergrundes. Böhlau, Wien, pp 56–57

    Google Scholar 

  • Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11:255–265

    Google Scholar 

  • Huber K, Weckström K, Drescher-Schneider R et al (2010) Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria). J Paleolimnol 43(1):131

    Google Scholar 

  • Huber KH (1999) Känozoikum (Erdneuzeit): Zum Formenschatz der Granitverwitterung und -abtragung im nordwestlichen Waldviertel. In: Steininger FF (ed) Erdgeschichte des Waldviertels, 2nd edn, Waldviertler Heimatbund, Horn, p 113–132

    Google Scholar 

  • Hughes PD, Gibbard PL (2018) Global glacier dynamics during 100 ka Pleistocene glacial cycles. Quat Res 90:1–22

    Google Scholar 

  • Hughes PD, Gibbard PL, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’(LGM). Earth-Sci Rev 125:171–198

    Google Scholar 

  • Ivy-Ochs S (2015) Glacier variations in the European Alps at the end of the last glaciation. Cuadernos De Investigación Geográfica 41:295–315

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Kubik PW et al (2006a) Glacier response in the European Alps to Heinrich event 1 cooling: the Gschnitz stadial. J Quat Sci 21(2):115–130

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A et al (2006b) The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geol Soc Am Spec Pap 415:43–60

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A et al (2008) Chronology of the last glacial cycle in the European Alps. J Quat Sci 23:559–573

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Maisch M et al (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Quat Sci Rev 28:2137–2149

    Google Scholar 

  • Jemec Auflič M, Jež J, Popit T et al (2017) The variety of landslide forms in Slovenia and its immediate NW surroundings. Landslides 14(4):1537–1546

    Google Scholar 

  • Joerin UE, Stocker TF, Schlüchter C (2006) Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16(5):697–704

    Google Scholar 

  • Joerin UE, Nicolussi K, Fischer A, Stocker TF, Schlüchter C (2008) Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quat Sci Rev 27:337–350

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796

    Google Scholar 

  • Keller O (1988) Ältere spätwürmzeitliche Gletschervorstöße und Zerfall des Eisstromnetzes in den nördlichen Rhein-Alpen (Weißbad-Stadium/Bühl-Stadium). Physische Geographie 27:1–241

    Google Scholar 

  • Kellerer-Pirklbauer A, Lieb GK, Kleinferchner H (2012) A new rock glacier inventory of the eastern European Alps. Austrian J Earth Sci 105(2):78–93

    Google Scholar 

  • Kerschner H, Ivy-Ochs S (2008) Palaeoclimate from glaciers: examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Glob Planet Change 60(1–2):58–71

    Google Scholar 

  • Kerschner H (1986) Zum Sendersstadium im Spätglazial der nördlichen Stubaier Alpen, Tirol. – Z Geomorphol Suppl 61:65–76

    Google Scholar 

  • Kerschner H (2009) Gletscher und Klima im Alpinen Spätglazial und frühen Holozän. Alp Space—Man Environ 6:5–26

    Google Scholar 

  • Klasen N, Fiebig M, Preusser F et al (2007) Luminescence dating of proglacial sediments from the Eastern Alps. Quat Int 164:21–32

    Google Scholar 

  • Kohl H (2000) Das Eiszeitalter in Oberösterreich: Abriss einer Quartärgeologie von Oberösterreich. Schriftenreihe Des Oberösterreichischen Musealvereins 17:1–487

    Google Scholar 

  • Krainer K, Ribis M (2012) A rock glacier inventory of the Tyrolean Alps (Austria). Austrian J Earth Sci 105(2):32–47

    Google Scholar 

  • Krenmayr HG (2000) Sedimentologie der letzt-interglazialen bis Mittelwürm-zeitlichen Seesedimente bei Mondsee. Mitt. Komm Quartärforsch Österr Akad Wiss 12:13–38, Wien

    Google Scholar 

  • Lambeck K, Rouby H, Purcell A et al (2014) Sea level and global ice volumes from the last glacial maximum to the Holocene. Proc Natl Acad Sci 111(43):15296–15303

    Google Scholar 

  • Lauterbach S, Brauer A, Andersen N et al (2011) Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-alpine lake Mondsee (northeastern Alps). J Quat Sci 26(3):253–267

    Google Scholar 

  • Lee JR, Candy I, Haslam R (2018) The Neogene and Quaternary of England: landscape evolution, tectonics, climate change and their expression in the geological record. Proc Geol Assoc 129(3):452–481

    Google Scholar 

  • Lenhardt WA, Švancara J, Melichar P et al (2007) Seismic activity of the Alpine–Carpathian–Bohemian Massif region with regard to geological and potential field data. Geol Carpath 58(4):397–412

    Google Scholar 

  • Lichtenecker N (1938) Die gegenwärtige und die eiszeitliche Schneegrenze in den Ostalpen. In: Götzinger G (ed) Verhandlungen der III Internationalen Quartärkonferenz (INQUA), September 1936. Geologische Landesanstalt, Wien, pp 141–147

    Google Scholar 

  • Lieb GK (1996) Permafrost und Blockgletscher in den östlichen österreichischen Alpen. Arbeiten Aus Dem Institut Für Geographie in Graz 33:9–125

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1). https://doi.org/10.1029/2004PA001071

  • Lomax J, Fuchs M, Preusser F et al (2014) Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria. Quat Int 351:88–97

    Google Scholar 

  • Lowe JJ, WalkerMJ (2015) Reconstructing quaternary environments. Routledge, London & New York

    Google Scholar 

  • Luetscher M, Boch R, Sodemann H et al (2015) North Atlantic storm track changes during the last glacial maximum recorded by Alpine speleothems. Nat Comm 6:6344. https://doi.org/10.1038/ncomms7344

    Article  Google Scholar 

  • Maisch M (1982) Zur Gletscher- und Klimageschichte des alpinen Spätglazials. Geogr Helv 37:93–104

    Google Scholar 

  • Maisch M (1987) Zur Gletschergeschichte des alpinen Spätglazials: analyse und Interpretation von Schneegrenzdaten. Geog Hel 42:63–71

    Google Scholar 

  • Mayr C, Brandlmeier B, Diersche V et al (2017) Nesseltalgraben, a new reference section of the last glacial period in southern Germany. J Paleolimnol 58(2):213–229

    Google Scholar 

  • Mayr C, Stojakowits P, Lempe B et al (2019) High-resolution geochemical record of environmental changes during MIS 3 from the northern Alps (Nesseltalgraben, Germany). Quat Sci Rev 218:122–136

    Google Scholar 

  • Mayr F, Heuberger H (1968) Type areas of Lateglacial and Postglacial deposits in Tyrol, Eastern Alps. In: Richmond GM (ed) Glaciations of the Alps. Series in earth sciences 7. University of Colorado, Boulder, pp 143–165

    Google Scholar 

  • Menzies J, Reitner JM (2016) Microsedimentology of ice stream tills from the Eastern Alps, Austria–a new perspective on till microstructures. Boreas 45(4):804–827

    Google Scholar 

  • Menzies J, Reitner JM (2019) Microstructures, subglacial till deposition, and shear band development revealing up-section changes in shear—a study from Weissbach, Austria. PGA Proc Geol Assoc 130(2):196–209

    Google Scholar 

  • Métois M, D’Agostino N, Avallone A et al (2015) Insights on continental collisional processes from GPS data: dynamics of the peri-Adriatic belts. J Geophys Res Solid Earth 120:8701–8719. https://doi.org/10.1002/2015JB012023

    Article  Google Scholar 

  • Meyer MC, Spötl C, Mangini A (2008) The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quat Sci Rev 27(5–6):476–496

    Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346(6279):29

    Google Scholar 

  • Monegato G, Ravizzi C (2018) The Late Pleistocene multifold glaciation in the Alps: update and open questions. Alp Mediterr Quat 31:225–229

    Google Scholar 

  • Monegato G, Ravazzi C, Donegana M et al (2007) Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quat Res 68:284–302

    Google Scholar 

  • Monegato G, Scardia G, Hajdas I et al (2017) The Alpine LGM in the boreal ice-sheets game. Sci Rep 7(1):2078. https://doi.org/10.1038/s41598-017-02148-7

    Article  Google Scholar 

  • Moran AP, Ivy-Ochs S, Schuh M et al (2016a) Evidence of central Alpine glacier advances during the younger dryas—early Holocene transition period. Boreas 45(3):398–410

    Google Scholar 

  • Moran AP, Ivy-Ochs S, Vockenhuber C et al (2016b) Rock glacier development in the Northern Calcareous Alps at the Pleistocene-Holocene boundary. Geomorphology 273:178–188

    Google Scholar 

  • Morlot AV (1847) Erläuterungen zur geologischen Übersichtskarte der nordöstlichen Alpen. Ein Entwurf zur vorzunehmenden Bearbeitung der physikalischen Geographie und Geologie ihres Gebietes. Braumüller & Seidel, Wien

    Google Scholar 

  • Muttoni G, Carcano C, Garzanti E et al (2003) Onset of major Pleistocene glaciations in the Alps. Geology 31(11):989–992

    Google Scholar 

  • NGRIP project members (2004) High-resolution record of Horthern Hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Google Scholar 

  • Nicolussi K (2011) Gletschergeschichte der Pasterze—Spurensuche in die nacheiszeitliche Vergangenheit. In: Lieb GK, Slupetzky H (eds) Die Pasterze. Verlag Anton Pustet, Der Gletscher am Großglockner, pp 24–27

    Google Scholar 

  • Nicolussi K, Patzelt G (2001) Untersuchungen zur holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Z Gletscherk Glazialgeol 36:1–87

    Google Scholar 

  • Nicolussi K, Schlüchter C (2012) The 8.2 ka event—calendar-dated glacier response in the Alps. Geology 40:819–822

    Google Scholar 

  • Nicolussi K, Kaufmann M, Patzelt G et al (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veg Hist Archaeobot 14(3):221–234

    Google Scholar 

  • Nicolussi K, Drescher-Schneider R, Le Roy M et al (2014) Alpine Gletscherschwankungen während des Holozäns. Geogr Rundsch 2014(7–8):16–20

    Google Scholar 

  • Nicolussi K (2009) Alpine Dendrochronologie—Untersuchungen zur Kenntnis der holozänen Umwelt- und Klimaentwicklung. In: Schmidt R, Matulla C, Psenner R (eds) Klimawandel in Österreich: Die Letzten 20.000 Jahre – und ein Blick voraus, Alpine space—man & environment. Innsbruck University Press, Innsbruck, pp 41–54

    Google Scholar 

  • Oeggl K, Unterfrauner H (2000) Die Pflanzenreste des Riß/Würm-Interglazials und des Würmglazials von Mondsee. Mitt. Komm Quartärforsch Österr Akad Wiss 12:93–122. Wien

    Google Scholar 

  • Papesch W, Rank D (2000) Isotopenuntersuchungen an den Seekreiden aus den Bohrkernen Mondsee. Mitt. Komm Quartärforsch Österr Akad Wiss 12:123–127. Wien

    Google Scholar 

  • Patzelt G (1987) Untersuchungen zur nacheiszeitlichen Schwemmkegel-und Talentwicklung in Tirol. Veröffentlichungen Des Tiroler Landesmuseum Ferdinandeum 67:93–123

    Google Scholar 

  • Patzelt G (1994) Holocene development of alluvial fans and the floor of the Inn valley, Tyrol. Mt Res Dev 14:283–284

    Google Scholar 

  • Patzelt G, Resch W (1986) Quartärgeologie des mittleren Tiroler Inntales zwischen Innsbruck und Baumkirchen (Exkursion C am 3. April 1986). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, pp 43–66

    Google Scholar 

  • Patzelt G (1995) Eastern Alps Traverse. In: Schirmer W (ed) Quaternary field trips in Central Europe. International union for quaternary research, XIV international congress, vol 1. Berlin, p 385

    Google Scholar 

  • Penck A (1920) Die Höttinger Breccie und die Inntalterrasse nördlich Innsbruck. Abhandlungen Der Preussischen Akademie Der Wissenschaften Physikalisch-Mathematische Klasse 1920:1–136

    Google Scholar 

  • Penck A, Brückner E (1909) Die Alpen im Eiszeitalter. Tauchnitz, Leipzig

    Google Scholar 

  • Piffl L (1971) Zur Gliederung des Tullner Feldes. Annalen des Naturhistorischen Museums Wien 75:293–310. Wien

    Google Scholar 

  • Pomper J, Salcher BC, Eichkitz C et al (2017) The glacially overdeepened trough of the Salzach Valley, Austria: Bedrock geometry and sedimentary fill of a major Alpine subglacial basin. Geomorphology 295:147–158

    Google Scholar 

  • Porter SC (1989) Some geological implications of average quaternary glacial conditions. Quat Res 32(3):245–261

    Google Scholar 

  • Prager C, Zangerl C, Patzelt G et al (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazard 8(2):377–407

    Google Scholar 

  • Preusser F, Fiebig M (2009) European Middle Pleistocene loess chronostratigraphy: some considerations based on evidence from the Wels site, Austria. Quat Int 198(1–2):37–45

    Google Scholar 

  • Preusser F, Reitner JM, Schlüchter C (2010) Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss J Earth Sci 103(3):407–426

    Google Scholar 

  • Rasmussen SO, Bigler M, Blockle SP et al (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28

    Google Scholar 

  • Raymo ME (1997) The timing of major climate terminations. Paleoceanography 12(4):577–585

    Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122

    Google Scholar 

  • Reiter F, Freudenthaler C, Hausmann H et al (2018) Active seismotectonic deformation in front of the Dolomites indenter, Eastern Alps. Tectonics. https://doi.org/10.1029/2017TC004867

  • Reitner JM (2005a) Quartärgeologie und Landschaftsentwicklung im Raum Kitzbühel-St. Johann i.T-Hopfgarten (Nordtirol) vom Riss bis in das Würm-Spätglazial (MIS 6–2). Dissertation, University of Vienna

    Google Scholar 

  • Reitner JM (2005b) Landschaftsentwicklung im Quartär. In: Schuster R (ed) Arbeitstagung 2005 der Geologischen Bundesanstalt Blatt 182 Spittal an der Drau, Gmünd/Kärnten. Geologische Bundesanstalt, Vienna, pp 63–81

    Google Scholar 

  • Reitner JM (2007) Glacial dynamics at the beginning of termination I in the Eastern Alps and their stratigraphic implications. Quat Int 164:64–84

    Google Scholar 

  • Reitner JM (2011) Das Inngletschersystem während des Würm-Glazial. In: Gruber A (ed) Arbeitstagung 2011 der Geologischen Bundesanstalt Blatt 88 Achenkirch. Geologische Bundesanstalt, Vienna, pp 79–88

    Google Scholar 

  • Reitner JM, Draxler I (2002) Die klimatisch-fazielle Entwicklung vor dem Würm-Maximum im Raum Kitzbühel-St. Johann—Hopfgarten (Nordtirol/Osterreich). Terra Nostra 6:298–304

    Google Scholar 

  • Reitner JM, Gruber A (2014) Glacial dynamics and large pre-LGM rock-slides in the lower Inn Valley and in the Brixen Valley. In: Kerschner H, Krainer K, Spötl C (eds) From the foreland to the central Alps. Field trips to selected sites of quaternary research in the Tyrolean and Bavarian Alps. Geozon Science Media, Berlin, pp 46–67

    Google Scholar 

  • Reitner, JM, Menzies J (2020) Microsedimentology of tills near Ainet, Austria-were palaeo-ice streams in the European Alps underlain by soft deforming bed zones? Austrian J Earth Sci 113(1):71–86

    Google Scholar 

  • Reitner JM, Ottner F (2011) Geochemische Charakterisierung der Verwitterungsintensität der Löss–Paläoboden-Sequenz von Wels/Aschet. Mitt Komm Quartärforsch Österr Akad Wiss 19:37–45

    Google Scholar 

  • Reitner J, Lang M, van Husen D (1993) Deformation of high slopes in different rocks after Würmian deglaciation in the Gailtal (Austria). Quat Intern 18:43–51

    Google Scholar 

  • Reitner JM, Ivy-Ochs S, Drescher-Schneider R et al (2016) Reconsidering the current stratigraphy of the Alpine lateglacial: implications of the sedimentary and morphological record of the Lienz area (Tyrol/Austria). E&G Quat Sci J 65(2):113–144

    Google Scholar 

  • Reitner JM, Ostermann M, Schuster R et al (2018) Der Bergsturz vom Auernig (Mallnitz/Kärnten), seine Altersstellung und Folgen. Carinthia II 207(127):503–548

    Google Scholar 

  • Reitner JM, Gruber W, Römer A et al (2010) Alpine overdeepenings and paleo-ice flow changes: an integrated geophysical-sedimentological case study from Tyrol (Austria). Swiss J Geosci 103(3):385–405

    Google Scholar 

  • Renssen H, Seppä H, Heiri O et al (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414

    Google Scholar 

  • Reuther AU, Fiebig M, Ivy-Ochs S et al (2011) Deglaciation of a large piedmont lobe glacier in comparison with a small mountain glacier–new insight from surface exposure dating. Two studies from SE Germany. E&G Quat Sci J 60(2–3):248–269

    Google Scholar 

  • Robl J, Hergarten S, Stüwe K (2008) Morphological analysis of the drainage system in the Eastern Alps. Tectonophysics 460(1–4):263–277

    Google Scholar 

  • Rousseau DD, Boers N, Sima A et al (2017) (MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records—a paleosol perspective. Quat Sci Rev 169:99–113

    Google Scholar 

  • Ruddiman WF (2001) Earth’s climate: past and future. Macmillan

    Google Scholar 

  • Salcher BC, Wagreich M (2010) Climate and tectonic controls on Pleistocene sequence development and river evolution in the Southern Vienna Basin (Austria). Quat Int 222(1–2):154–167

    Google Scholar 

  • Salcher BC, Hinsch R, Wagreich M (2010) High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria. Geomorphology 122(3–4):283–293

    Google Scholar 

  • Salcher BC, Starnberger R, Götz J (2015) The last and penultimate glaciation in the North Alpine Foreland: new stratigraphical and chronological data from the Salzach glacier. Quat Intern 388:218–231

    Google Scholar 

  • Salcher BC, Frank-Fellner C, Lomax J et al (2017) Middle to late Pleistocene multi-proxy record of environmental response to climate change from the Vienna Basin, Central Europe (Austria). Quat Sci Rev 173:193–210

    Google Scholar 

  • Salcher B, Starnberger R, Götz J (2018) Field trip post‐EX‐3: sediment‐landform associations of major glaciations in the North Alpine Foreland In: Neubauer (ed) XXI international congress of the Carpathian Balkan geological association: guidebook to pre‐ and post‐conference excursions: Salzburg. Berichte der Geologischen Bundesanstalt 126(2018):289–303

    Google Scholar 

  • Sanders D, Ostermann M (2006) Depositional setting of the sedimentary rocks containing the “warm-interglacial” fossil flora of the Höttinger Brekzie (Pleistocene, Northern Calcareous Alps, Austria): a reconstruction. Veröffentlichungen Tiroler Landesmuseums Ferdinandeum 86:91–118

    Google Scholar 

  • Sanders S, Spötl C (2014) The Hötting Breccia—a Pleistocene key site near Innsbruck, Tyrol. In: Kerschner H, Krainer K, Spötl C (eds) From the foreland to the central Alps. Field trips to selected sites of Quaternary research in the Tyrolean and Bavarian Alps. Geozon Science Media, Berlin, pp 82–94

    Google Scholar 

  • Sanders D, Wischounig L, Gruber A et al (2014) Inner gorge–slot canyon system produced by repeated stream incision (eastern Alps): significance for development of bedrock canyons. Geomorphology 214:465–484

    Google Scholar 

  • Schmidt R, van den Bogaard C, Merkt J et al (2002) A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: the Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quatern Int 88(1):45–56

    Google Scholar 

  • Schmidt R, Weckström K, Lauterbach S et al (2012) North Atlantic climate impact on early late-glacial climate oscillations in the south-eastern Alps inferred from a multi-proxy lake sediment record. J Quat Sci 27(1):40–50

    Google Scholar 

  • Scholger R, Terhorst B (2013) Magnetic excursions recorded in the middle to upper Pleistocene loess/palaeosol sequence Wels-Aschet (Austria). E&G Quaternary Sci J 62(1):14–21

    Google Scholar 

  • Schultze E (1984) Neue Erkenntnisse zur spät- und frühpostglazialen Vegetations- und Klimageschichte im Klagenfurter Becken. Carinthia II 174(94):261–266

    Google Scholar 

  • Sebe K, Csillag G, Ruszkiczay-Rüdiger Z et al (2011) Wind erosion under cold climate: a Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary). Geomorphology 134(3–4):470–482

    Google Scholar 

  • Sebe K, Roetzel R, Fiebig M et al (2015) Pleistocene wind system in eastern Austria and its impact on landscape evolution. CATENA 134:59–74

    Google Scholar 

  • Seguinot J, Ivy-Ochs S, Jouvet G et al (2018) Modelling last glacial cycle ice dynamics in the Alps. Cryosphere 12(10):3265–3285

    Google Scholar 

  • Simony F (1847) Über die Spuren der vorgeschichtlichen Eiszeit im Salzkammergute. Berichte über Mittheilungen von Freunden der Naturwissenschaften in Wien I:215–248. Wien

    Google Scholar 

  • Spötl C, Mangini A (2006) U/Th age constraints on the absence of ice in the central Inn Valley (eastern Alps, Austria) during Marine Isotope Stages 5c to 5a. Quat Res 66(1):167–175

    Google Scholar 

  • Spötl C, Holzkämper S, Mangini A (2007) The last and the penultimate interglacial as recorded by speleothems from a climatically sensitive high-elevation cave site in the alps. In: Sirocko F, Claussen M, Sánchez Goñi MF et al (eds) The climate of past interglacials. Developments in Quaternary Sciences, vol 7. Elsevier, pp 471–491

    Google Scholar 

  • Spötl C, Reimer PJ, Starnberger R et al (2013) A new radiocarbon chronology of Baumkirchen, stratotype for the onset of the Upper Würmian in the Alps. J Quat Sci 28(6):552–558

    Google Scholar 

  • Sprafke T (2016) Löss in Niederösterreich: Archiv quartärer Klima- und Landschaftsveränderungen. Würzburg University Press

    Google Scholar 

  • Sprafke T, Thiel C, Terhorst B (2014) From micromorphology to palaeoenvironment: the MIS 10 to MIS 5 record in Paudorf (Lower Austria). CATENA 117:60–72

    Google Scholar 

  • Starnberger R, Rodnight H, Spötl C (2011) Chronology of the last glacial maximum in the Salzach Palaeoglacier area (Eastern Alps). J Quat Sci 26(5):502–510

    Google Scholar 

  • Starnberger R, Drescher-Schneider R, Reitner JM et al (2013) Late Pleistocene climate change and landscape dynamics in the Eastern Alps: the inner-alpine Unterangerberg record (Austria). Quat Sci Rev 68:17–42

    Google Scholar 

  • Steinemann O, Reitner JM, Ivy-Ochs S et al (2020) Tracking rockglacier evolution in the Eastern Alps from the Lateglacial to the early Holocene. Quatern Sci Rev 241:106424. https://doi.org/10.1016/j.quascirev.2020.106424

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36. https://doi.org/10.1029/2009GL040142

  • Sternai P, Herman F, Champagnac JD et al (2012) Pre-glacial topography of the European Alps. Geology 40(12):1067–1070

    Google Scholar 

  • Sternai P, Sue C, Husson L et al (2019) Present-day uplift of the European Alps: evaluating mechanisms and models of their relative contributions. Earth-Sci Rev 190:589–604

    Google Scholar 

  • Terhorst B (2013) A stratigraphic concept for middle Pleistocene quaternary sequences in upper Austria. E&G Quat Sci J 62(1):4–13

    Google Scholar 

  • Terhorst B, Frechen M, Reitner J (2002) Chronostratigraphische Ergebnisse aus Lossprofilen der Inn-und Traun-Hochterrassen in Oberosterreich. Z Geomorphol Suppl 127:213–232

    Google Scholar 

  • Terhorst B, Ottner F, Wriessnig K (2012) Weathering intensity and pedostratigraphy of the middle to upper Pleistocene loess/palaeosol sequence of Wels-Aschet (Upper Austria). Quat Int 26:142–154

    Google Scholar 

  • Terhorst B, Kühn P, Damm B et al (2014) Paleoenvironmental fluctuations as recorded in the loess-paleosol sequence of the upper Paleolithic site Krems-Wachtberg. Quat Int 351:67–82

    Google Scholar 

  • Terhorst B, Sedov S, Sprafke T et al (2015) Austrian MIS 3/2 loess–palaeosol records—key sites along a west–east transect. Palaeogeogr Palaeoclimatol Palaeoecol 418:43–56

    Google Scholar 

  • Till A (1907) Das große Naturereignis von 1348 und die Bergstürze des Dobratsch. Mitteilungen der k.k. Geographischen Gesellschaft in Wien 10–11; pp 534–645. Wien

    Google Scholar 

  • Traub F, Jerz H (1975) Ein Lößprofil von Duttendorf (Oberösterreich) gegenüber Burghausen an der Salzach. Z Gletscherk Glazialgeol 11:175–193

    Google Scholar 

  • Troll C (1924) Der diluviale Inn-Chiemsee-Gletscher: das geographische Bild eines typischen Alpenvorlandgletschers. Forschungen Zur Deutschen Landeskunde 23:1–121

    Google Scholar 

  • Urban OH (2000) Der lange Weg zur Geschichte. Die Urgeschichte Österreichs. In: Wolfram H (ed) Österreichische Geschichte bis 15 v. Chr. Carl Ueberreuter, Vienna, p 511

    Google Scholar 

  • van Husen D (1968) Ein Beitrag zur Talgeschichte des Ennstales im Quartär. Mitt Ges Geol Bergbaustud 18:249–286

    Google Scholar 

  • van Husen D (1971) Zum Quartär des unteren Ennstales von Großraming bis zur Donau. Verh Geol BA 1971:511–521

    Google Scholar 

  • van Husen D (1977) Zur Fazies und Stratigraphie der jungpleistozänen Ablagerungen im Trauntal. Jb Geol BA 120:1–130

    Google Scholar 

  • van Husen D (1979) Verbreitung, Ursachen und Füllung glazial übertiefter Talabschnitte an Beispielen in den Ostalpen. Eiszeitalt Ggw 29:9–22

    Google Scholar 

  • van Husen D (1981) Geologisch-sedimentologische Aspekte im Quartär von Österreich. Mitt Österr Geol Ges 74(75):197–230

    Google Scholar 

  • van Husen D (1983a) A model of valley bottom sedimentation during climatic changes in a humid alpine environment. In: Evenson EB, Schlüchter C, Rabassa J (eds) Tills and related deposits. Balkema, Rotterdam, pp 341–344

    Google Scholar 

  • van Husen D (1983b) General sediment development in relation to the climatic changes during Würm in the eastern Alps. In: Evenson EB, Schlüchter C, Rabassa J (eds) Tills and related deposits. Balkema, Rotterdam, pp 345–349

    Google Scholar 

  • van Husen D (1986) Bau- Und Hydrogeologische Bedeutung Eiszeitlicher Vorgänge Mitteilungen Der Gesellschaft Der Geologie- Und Bergbaustudenten in Österreich 33(1986):23–45

    Google Scholar 

  • van Husen D (1987) Die Ostalpen in den Eiszeiten. Veröff Geol Bundesanst 2:1–24

    Google Scholar 

  • van Husen D (1989) The last interglacial-glacial cycle in the Eastern Alps. Quat Int 3:115–121

    Google Scholar 

  • van Husen D (1997) LGM and late-glacial fluctuations in the Eastern Alps. Quat Int 38:109–118

    Google Scholar 

  • van Husen D (1999) Geologisch-baugeologische Erfahrungen beim Bau des Eisenbahntunnels Lambach, OÖ. Mitt Österr Geol Ges 90:137–154

    Google Scholar 

  • van Husen D (2000a) Geological processes during the Quaternary. Mitt Österr Geol Ges 92:135–156

    Google Scholar 

  • van Husen D (2000b) Die paläogeographische Situation des Mondsees im Riß/Würm Inter-glazial und Frühwürm. Mitt. Komm Quartärforsch Österr Akad Wiss 12:9–12. Wien

    Google Scholar 

  • van Husen D (2000c) Die Schieferkohle von Nieselach (Gailtal Kärnten): Geologischer Rahmen, Sedimentationsbedingungen im Talboden, zeitliche Stellung. Mitt. Komm Quartärforsch Österr Akad Wiss 12:131–139. Wien

    Google Scholar 

  • van Husen D (2011) Quaternary glaciations in Austria. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary Glaciations—extent and chronology a closer look. Develop Quat Sci 15:15–28. Elsevier

    Google Scholar 

  • van Husen D, Mayer M (2007) The hole of Bad Aussee, an unexpected overdeepened area in NW Steiermark, Austria. Austrian J Earth Sci 100:128–136

    Google Scholar 

  • van Husen D, Reitner JM (2011a) An outline of the quaternary stratigraphy of Austria. E&G Quat Sci J 60:366–387

    Google Scholar 

  • van Husen D, Reitner, JM (2011b) Klimagesteuerte Terrassen-und Lössbildung auf der Traun-Enns-Platte und ihre zeitliche Stellung (Das Profil Wels/Aschet). In: van Husen D, Reitner JM (eds) Die Löss-Sequenz Wels/Aschet (ehemalige Lehmgrube Würzburger). Mitt Komm Quartärforsch Österr Akad Wiss, vol 19, Verlag der Österreichischen Akademie der Wissenschaften, pp 1–11

    Google Scholar 

  • van Husen D, Ivy-Ochs S, Alfimov V (2007) Mechanism and age of late glacial landslides in the Cal-careous Alps; The Almtal, Upper Austria. Austrian J Earth Sci 100:114–126

    Google Scholar 

  • Vandenberghe J, French HM, Gorbunov A et al (2014) The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43(3):652–666

    Google Scholar 

  • Vinther BM, Buchardt SL, Clausen HB et al (2009) Holocene thinning of the Greenland ice sheet. Nature 461:385–388

    Google Scholar 

  • Wagner T, Fabel D, Fiebig M et al (2010) Young uplift in the non-glaciated parts of the Eastern Alps. Earth Planet Sci Lett 295(1–2):159–169

    Google Scholar 

  • Walker M, Johnsen S, Rasmussen SO et al (2009) Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J Quat Sci 24:3–17

    Google Scholar 

  • Weinberger L (1955) Exkursion durch das österreichische Salzachgletschergebiet und die Moränengürtel der Irrsee- und Attersee-Zweige des Traungletschers. Verh Geol BA 1955:7–34

    Google Scholar 

  • Wirsig C, Zasadni J, Christl M et al (2016) Dating the onset of LGM ice surface lowering in the High Alps. Quat Sci Rev 143:37–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen M. Reitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reitner, J.M. (2022). The Imprint of Quaternary Processes on the Austrian Landscape. In: Embleton-Hamann, C. (eds) Landscapes and Landforms of Austria. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-92815-5_3

Download citation

Publish with us

Policies and ethics