Skip to main content

Classification-Aware Path Planning of Network of Robots

  • 304 Accesses

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 22)

Abstract

We propose a classification-aware path planning architecture for a team of robots in order to traverse along the most informative paths with the objective of completing map classification tasks using localized (partial) observations from the environment. In this method, the neural network layers with parallel structure utilize each agent’s memorized history and solve the path planning problem to achieve classification. The objective is to avoid visiting less informative regions and significantly reduce the total energy cost (e.g., battery life) when solving the classification problem. Moreover, the parallel design of the path planning structure reduces the training complexity drastically. The efficacy of our approach has been validated by a map classification problem in the simulation environment of satellite campus maps using quadcopters with onboard cameras.

Keywords

  • Network of robots
  • Distributed classification
  • Path planning
  • Machine learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92790-5_23
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92790-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Ben-Afia, A., et al.: Review and classification of vision-based localisation techniques in unknown environments. IET Radar Sonar Navig. 8(9), 1059–1072 (2014)

    CrossRef  Google Scholar 

  2. Bock, M., et al.: XV. Methods for creating functional soil databases and applying digital soil mapping with SAGA GIS. In: JRC Scientific and technical Reports, Office for Official Publications of the European Communities, Luxemburg (2007)

    Google Scholar 

  3. Cai, P., et al.: LeTS-drive: driving in a crowd by learning from tree search (2019). arXiv:1905.12197 [cs.RO]

  4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    CrossRef  Google Scholar 

  5. Islam, Md.J., Fulton, M., Sattar, J.: Toward a generic diverfollowing algorithm: balancing robustness and efficiency in deep visual detection. IEEE Robot. Autom. Lett. 4(1), 113–120 (2018)

    Google Scholar 

  6. Kavraki, L.E., et al.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    CrossRef  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980 [cs.LG]

  8. Konar, A., et al.: A deterministic improved Q-learning for path planning of a mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 43(5), 1141–1153 (2013)

    CrossRef  Google Scholar 

  9. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    CrossRef  Google Scholar 

  10. Liu, G., et al.: Distributed map classification using local observations. arXiv preprint arXiv:2012.10480 (2021)

  11. Manduchi, R., et al.: Obstacle detection and terrain classification for autonomous off-road navigation. Auton. Robots 18(1), 81–102 (2005). https://doi.org/10.1023/:AURO.0000047286.62481.1d. ISSN 1573-7527

  12. Meyer, J.-A., Filliat, D.: Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies. Cogn. Syst. Res. 4(4), 283–317 (2003)

    CrossRef  Google Scholar 

  13. Mousavi, H.K., et al.: Multi-agent image classification via reinforcement learning. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5020–5027 (2019). https://doi.org/10.1109/IROS40897.2019.8968129

  14. Mousavi, H.K., et al.: A layered architecture for active perception: image classification using deep reinforcement learning (2019). arXiv:1909.09705 [cs.LG]

  15. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Wulfmeier, M., Wang, D.Z., Posner, I.: Watch this: scalable cost-function learning for path planning in urban environments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2089–2095. IEEE (2016)

    Google Scholar 

  18. Wulfmeier, M., et al.: Large-scale cost function learning for path planning using deep inverse reinforcement learning. Int. J. Robot. Res. 36(10), 1073–1087 (2017)

    CrossRef  Google Scholar 

Download references

Acknowledgement

This work was supported in parts by the AFOSR FA9550-19-1-0004, ONR N00014-19-1-2478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Liu, G., Amini, A., Takáč, M., Motee, N. (2022). Classification-Aware Path Planning of Network of Robots. In: Matsuno, F., Azuma, Si., Yamamoto, M. (eds) Distributed Autonomous Robotic Systems. DARS 2021. Springer Proceedings in Advanced Robotics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-92790-5_23

Download citation