Skip to main content

Climate Change: Concerns and Influences on Biodiversity of the Indian Himalayas

  • Chapter
  • First Online:
Climate Change

Abstract

The Himalayas are a diverse and imperative center of biodiversity due to their immense climatic, topographic, and geographic ascents. The Indian Himalayan Region (IHR) started from Siwaliks (foothills of the south) and extended up to Trans-Himalaya (Tibetan plateau in the north), covering 12 Indian states. The IHR harbors many rivulets, lakes, rivers, vegetation, and animal species thus serves as a rich repository of biodiversity due to its unique biogeography. Climate change impacts such as increasing temperature, melting glaciers, and extreme weather events are severely deteriorating the fragile ecosystem and natural resources of the Himalayas, thus inducing the loss of biodiversity at an alarming rate. Consequently, these are also altering the development, behavior, and interactions between different biological species. It leads to the adaptation of species by developing new traits or migration and even extinction of several species. The present chapter investigates the causes and consequences of continually varying climate conditions on the behavior and survival of the species in the IHR, along with various approaches to mitigate global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adedeji O, Okocha R, Olatoye O (2014) Global climate change. J Geosci Environ Protect 2:114–122

    Article  Google Scholar 

  • Alhorr Y, Eliskandarani E, Elsarrag E (2014) Approaches to reducing carbon dioxide emissions in the built environment: low carbon cities. Int J Sustain Built Environ 3:167–178

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Berrou A, Raybaut M, Godard A et al (2009) High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO. Appl Phys B Lasers Opt 98:217

    Article  ADS  Google Scholar 

  • Bhushan I, Kumar A, Patel JS et al (2016) The Indian Himalayan ecosystem as source for survival. In: Bisht J, Meena V, Mishra P et al (eds) Conservation Agriculture. Springer, Singapore, pp 367–380

    Chapter  Google Scholar 

  • Borduas N, Donahue NM (2018) The natural atmosphere. In: Dransfield T, Torok B (ed) Green chemistry. Elsevier, pp 131–150

    Google Scholar 

  • Cassia R, Nocioni M, Correa-Aragunde N et al (2018) Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front Plant Sci 9:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Pattanayak A, Mandal S et al (2014) An overview of climate change: causes, trends and implications. In: Roychowdhury R (ed) Crop improvement in the era of climate change. International Publishing House, New Delhi, I.K, pp 1–29

    Google Scholar 

  • Chandra K, Gupta D, Gopi KC et al (2018) Faunal Diversity of Indian Himalaya: an overview. In: Chandra K, Gupta D, Gopi KC et al (ed) Faunal Diversity of Indian Himalaya, pp 1–44 (Published by the Director, Zool. Surv. India, Kolkata)

    Google Scholar 

  • Chape S, Spalding MD, Jenkins MD (2008) The world’s protected areas: status, values and prospects in the 21st century. University of California Press, London in association with UNEP-World Conservation Monitoring Centre, Cambridge, pp 1–365

    Google Scholar 

  • Chaturvedi RK, Gopalakrishnan R, Jayaraman M et al (2011) Impact of climate change on Indian forests: a dynamic vegetation modeling approach. Mitig Adapt Strateg Glob Change 16:119–142

    Article  Google Scholar 

  • Cohen SJ, Waddell MW (2009) Climate change in the 21st century. McGill-Queen’s University Press

    Google Scholar 

  • Cruz RV, Harasawa H, Lal M et al (2007) Asia climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 469–506

    Google Scholar 

  • Darkwah WK, Odum B, Addae M et al (2018) Greenhouse effect: greenhouse gases and their impact on global warming. J Sci Res Reports 17:1–9

    Article  Google Scholar 

  • Donat MG, Sillmann J, Fischer EM (2020) Changes in climate extremes in observations and climate model simulations, from the past to the future. In: Sillmann J, Sippel S, Russo S (eds) Climate extremes and their implications for impact and risk assessment. Elsevier, Cambridge, MA, pp 31–57

    Chapter  Google Scholar 

  • Filho WL (2015) Handbook of climate change adaptation. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Girvetz EH, Zganjar C, Raber GT et al (2009) Applied climate‐change analysis: the climate wizard tool. PLoSONE 4:e8320

    Google Scholar 

  • Habib B, Shrotriya S, Mahar N et al (2015) Field Sampling Protocol-Mammalian fauna in Trans-Himalayan Landscape, Uttarakhand, India. Wildlife Institute of India and Uttarakhand Forest Department, pp 1–30

    Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Hossain MS, Arshad M, Qian L et al (2019) Economic impact of climate change on crop farming in Bangladesh: an application of Ricardian method. Ecol Econ 164:106354

    Google Scholar 

  • IPCC (2001) Climate change 2001: synthesis report. In: Watson RT and the Core Writing Team (ed) A contribution of working groups I, II, and III to the third assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA

    Google Scholar 

  • IPCC (2007a) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M et al (ed) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • IPCC (2007b) Climate change 2007: Synthesis Report. In: Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O et al Summary for policymakers, an assessment of the Intergovernmental panel on climate change

    Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • IPCC (2014a) Climate Change 2014: Synthesis Report. In: Pachauri RK, Meyer LA (ed) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team]. IPCC, Geneva, Switzerland

    Google Scholar 

  • IPCC (2014b) Climate Change 2014: Mitigation of climate change. In: Edenhofer OR, Pichs-Madruga Y, Sokona E, Farahani S, Kadner K, Seyboth A et al (ed) Contribution of working group III to the fifth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IUCN (2004) The IUCN red list of threatened species. The World Conservation Union, Gland, Switzerland

    Google Scholar 

  • IUCN (2015–2016). The IUCN red list of threatened species. www.iucnredlist.org

  • IUCN (2017) The IUCN red list of threatened species. Version 2017-3

    Google Scholar 

  • Kindermann G, Obersteiner M, Sohngen B et al (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Natl Acad Sci 105:10302–10307

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Korner C (2004) Mountain biodiversity, its causes and function. Ambio Special Report 13:11–17

    ADS  Google Scholar 

  • Kumar A, Adhikari BS, Rawat GS (2017) Biogeographic delineation of the Indian Trans-Himalaya: need for revision. Curr Sci 113:1032–1033

    Google Scholar 

  • Kumar V, Chopra AK (2009) Impact of climate change on biodiversity of India with special reference to Himalayan region-an overview. J Appl Nat Sci 1:117–122

    Article  Google Scholar 

  • Kumari R, Banerjee A, Kumar R et al (2019) Deforestation in India: consequences and sustainable solutions. In: Suratman MN, Latif ZA, Oliveira GD et al (ed) Forest degradation around the world, IntechOpen

    Google Scholar 

  • Lemoine N, Bohning-Gaese K (2003) Potential impact of global climate change on species richness of long-distance migrants. Conservation Biol 17:577–586

    Article  Google Scholar 

  • Lone B, Qayoom S, Singh P et al (2017) Climate change and its impact on crop productivity. British J Appl Sci Tech 21:1–15

    Article  Google Scholar 

  • Mac MJ, Opler PA, Puckett Haecker CE et al (1998) Status and trends of the Nation’s biological resources. U.S. Department of the Interior, U.S. Geological Survey, pp 89–93

    Google Scholar 

  • Medinets S, Skiba U, Rennenberg H et al (2015) A review of soil NO transformation: associated processes and possible physiological significance on organisms. Soil Biol Biochem 80:92–117

    Article  CAS  Google Scholar 

  • Mehta HS, Julka JM (2001) Mountains: Trans-Himalaya. In: Das AK, Sanyal AK (eds) Alfred JRB. Ecosystems of India, ENVIS Centre Zoological Survey of India, pp 73–92

    Google Scholar 

  • Mehta P, Sekar KC, Bhatt D et al (2020) Conservation and prioritization of threatened plants in Indian Himalayan Region. Biodivers Conserv 29:1723–1745

    Article  Google Scholar 

  • Meure CM, Etheridge D, Trudinger C et al (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33:L14810

    Article  ADS  Google Scholar 

  • Murdoch A, Mantyka-Pringle C, Sharma S (2020) The interactive effects of climate change and land use on boreal stream fish communities. Sci Total Environ 700:34518

    Article  Google Scholar 

  • NBAP (2008) National Biodiversity Action Plan, Ministry of Environment and Forest, GoI. Avilable at http://nbaindia.org/uploaded/Biodiversityindia/NBAP.pdf

  • Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (2009) Biodiversity, ecosystem functioning and human wellbeing: an ecological and economic perspective. Oxford University Press, UK

    Book  Google Scholar 

  • Namgail T (2009) Mountain ungulates of the trans-Himalayan region of Ladakh, India. Int J Wild 15:35–40

    Google Scholar 

  • National Action Plan on Climate Change, GOI (2008) http://pmindia.nic.in/Pg01-52.pdf

  • Nayar MP, Shastry ARK (1987) Red data book of Indian plants. Botanical Survey of India, Howrah

    Google Scholar 

  • Nayar MP, Shastry ARK (1988) Red data book of Indian plants. Botanical Survey of India, Howra

    Google Scholar 

  • Nayar MP, Shastry ARK (1990) Red data book of Indian plants. Botanical Survey of India, Howrah

    Google Scholar 

  • NEP (2006) National Environment Policy, Ministry of Environment and Forest, GOI. Avilable at http://www.envfor.nic.in/nep/nep2006e.pdf

  • NITI Aayog (2018) Contributing to sustainable development in the Indian Himalayan region: a summary report

    Google Scholar 

  • Orimoloye IR, Mazinyo SP, Kalumba AM et al (2019) Implications of climate variability and change on urban and human health: a review. Cities 91:213–223

    Article  Google Scholar 

  • Palni LMS, Rawal RS (2010) Conservation of Himalayan bioresources: an ecological, economical and evolutionary perspective. In: Sharma VP (ed) Nature at work: ongoing saga of evolution. Springer, New Delhi

    Google Scholar 

  • Pandey D, Agrawal M, Pandey JS (2011) Carbon footprint: current methods of estimation. Environ Monit Assess 178:135–160

    Article  CAS  PubMed  Google Scholar 

  • Pandit MK, Sodhi NS, Koh LP et al (2007) Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biod Cons 16:153–163

    Article  Google Scholar 

  • Pramanik P, Bhaduri D (2016) Impact of climate change on water resources in Indian Himalaya. In: Bisht J, Meena V, Mishra P et al (eds) Conservation agriculture. Springer, Singapore, pp 487–507

    Chapter  Google Scholar 

  • Rao CS, Gopinath KA, Prasad JVNS et al (2016) Climate resilient villages for sustainable food security in Tropical India: concept, process, technologies, institutions, and impacts. In: Sparks DL (ed) Advances in Agronomy, vol 140. Academic Press, Elsevier BV, pp 101–214

    Google Scholar 

  • Reddy C, Jha CS, Diwakar PG, Dadhwal VK (2015) Nation-wide classification of forest types of India using remote sensing and GIS. Envir Mon Assess 187:1–42

    Article  CAS  Google Scholar 

  • Rodgers WA, Panwar HS, Mathur VB (2002) Wildlife protected area network in India: a review, executive summary. Wildlife Institute of India, Dehradun, pp 1–51

    Google Scholar 

  • Samant SS (2021) Floristic diversity of the Himalaya in relation to climate change: status, values and conservation. J Graph Era Univ 9:31–54

    Google Scholar 

  • Sati VP (2016) Geography of Himalaya. In: Singh RB (ed) Progress in Indian Geography, A country report, 2012–16. In: The 33rd international geographical congress, Beijing, China (August 21–25, 2016). Indian National Academy, New Delhi, pp 183–191

    Google Scholar 

  • Seinfeld JH (2011) Insights on global warming. AIChE J 57:3259–3284

    Article  CAS  Google Scholar 

  • Sharma E, Chettri N, Oli KP (2010) Mountain biodiversity conservation and management: a paradigm shift in policies and practices in the Hindu Kush-Himalayas. Ecol Res 25:909–923

    Article  Google Scholar 

  • Sidhu GS (2016) Soil conservation of Northwestern Himalayas (NWH): their constraints and potentials for sustainable hill agriculture. In: Bisht J, Meena V, Mishra P et al (eds) Conservation agriculture. Springer, Singapore, pp 315–338

    Chapter  Google Scholar 

  • Singh BR, Singh O (2012) Study of impacts of global warming on climate change: rise in sea level and disaster frequency. In: Singh BR (ed) Global warming—impacts and future perspective, IntechOpen, pp 93–118

    Google Scholar 

  • Singh DK, Hajra PK (1996) Floristic diversity. In: Gujral GS, Sharma V (ed) Changing perspectives of Biodiversity Status in the Himalaya. British Council, New Delhi

    Google Scholar 

  • Singh JS (2004) Sustainable development of the Indian Himalayan region: linking ecological and economic concerns. Xth Pt. Govind Ballabh Pant Memorial Lecture

    Google Scholar 

  • Singh JS (2006) Sustainable development of the Indian Himalayan region: linking ecological and economic concerns. Curr Sci 90:784–788

    Google Scholar 

  • Singh JS, Singh SP (1992) Forests of Himalaya: structure, function and impact of man. Gyanodaya Prakashan

    Google Scholar 

  • Singh SP (2002) Balancing the approaches of environmental conservation by considering ecosystem services as well as biodiversity. Curr Sci 82:1331–1335

    Google Scholar 

  • Sintayehu DW (2018) Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosystem Health Sust 4:225–239

    Article  Google Scholar 

  • Soden BJ, Jackson DL, Ramaswamy V et al (2005) The radiative signature of upper tropospheric moistening. Science 310:841–844

    Article  ADS  CAS  PubMed  Google Scholar 

  • Spehn EM, Messerli B, Korner C (2002) A global assessment of mountain biodiversity: synthesis. In: Korner C, Spehn EM (ed) Mountain biodiversity. A global assessment, Parthenon, Boca Raton, pp 1–336

    Google Scholar 

  • Spooner DE, Xenopoulos MA, Schneider C et al (2011) Coextirpation of host-affiliate relationships in rivers: The role of climate change, water withdrawal, and host-specificity. Global Change Biol 17:1720–1732

    Article  ADS  Google Scholar 

  • Ved DK, Kinhal GA, Haridasan K et al (2003a) Report of the conservation assessment and management prioritisation for the medicinal plants of Arunachal Pradesh, Assam, Meghalaya and Sikkim. 27 February—1 March 2003, Guwahati. Foundation for Revitalisation of Local Health Traditions and Himalayan Forest Research Institute, pp 1–153

    Google Scholar 

  • Ved DK, Kinhal GA, Ravikumar K et al (2003b) Conservation assessment and management prioritisation for the medicinal plants of Himachal Pradesh, Jammu & Kashmir and Uttaranchal. Proceedings of the workshop held at Shimla during 19–24 May, 2003. Foundation for Revitalisation of Local Health Traditions, pp 1–24

    Google Scholar 

  • Walther GR, Post E, Menzel A et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  ADS  CAS  PubMed  Google Scholar 

  • Whitefield CP, Davidson AW, Ashenden TW (1998) The effects of nutrient limitation on the response of Plantago major to ozone. New Phytol 140:219–230

    Article  Google Scholar 

  • Wikramanayake E, Dinerstein E, Allnut T et al (1998) A biodiversity assessment and gap analysis of the Himalayas. World Wildlife Fund-U.S., Conservation Science Program/UNDP Report

    Google Scholar 

  • Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect. In: Farsi M, Makarem MA (eds) Rahimpour MR. Advances in carbon capture, Woodhead Publishing, pp 3–28

    Google Scholar 

  • Zhong L, Wang J (2017) Evaluation on effect of land consolidation on habitat quality based on InVEST Model. Trans Chin Soc Agric Eng 33:250–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, D., Tiwana, A.S., Kaur, S., Gupta, S. (2022). Climate Change: Concerns and Influences on Biodiversity of the Indian Himalayas. In: Rani, S., Kumar, R. (eds) Climate Change. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-92782-0_13

Download citation

Publish with us

Policies and ethics