Skip to main content

Contention Resolution, Matrix Scaling andĀ Fair Allocation

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12982))

Included in the following conference series:

  • 397 Accesses

Abstract

A contention resolution (CR) scheme is a basic algorithmic primitive, that deals with how to allocate items among a random set S of competing players, while maintaining various properties. We consider the most basic setting where a single item must be allocated to some player in S. Here, in a seminal work, Feige and Vondrak (2006) designed a fair CR scheme when the set S is chosen from a product distribution. We explore whether such fair schemes exist for arbitrary non-product distributions on sets of players S, and whether they admit simple algorithmic primitives. Moreover, can we go beyond fair allocation and design such schemes for all possible achievable allocations.

We show that for any arbitrary distribution on sets of players S, and for any achievable allocation, there exist several natural CR schemes that can be succinctly described, are simple to implement and can be efficiently computed to any desired accuracy. We also characterize the space of achievable allocations for any distribution, give algorithms for computing an optimum fair allocation for arbitrary distributions, and describe other natural fair CR schemes for product distributions. These results are based on matrix scaling and various convex programming relaxations.

Part of the work has been done while the author was a postdoctoral fellow at CWI Amsterdam and TU Eindhoven, and was supported by the ERC Consolidator Grant 617951 and the NWO VICI grant 639.023.812.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Define a distribution \(\tilde{\mathcal {P}}\) on \([n+1]\) players, where for \(S\subseteq [n+1]\), we set \(\tilde{p}_S = p_{S \setminus \{n+1\}} \) if \(n+1 \in S \) and \(\tilde{p}_S=0\) otherwise, and \(g_{n+1} = 1-p_\emptyset -\sum _{i \in [n]} g_i\). Then \(\sum _{i \in [n+1]} g_i=1-p_\emptyset \) and whenever the item is assigned to player \(n+1\) in the CR scheme for \(\tilde{\mathcal {P}}\) we do not assign it at all in the scheme for \(\mathcal {P}\).

  2. 2.

    Suppose \(n>3\) and \(S=\{1\}\) or \(S = \{1,\ldots ,n\}\), each with probability 1/2. Then \(q_1 = 1\) and \(q_i=1/2\) for \(i\ge 2\). For a balanced allocation with \(g=\alpha q\), the best g is \((1/(n-1),1/2(n-1),\ldots ,1/2(n-1))\), but here \(\sum _i g_i < 1-p_\emptyset \).

  3. 3.

    In the example above, this allows one to achieve the allocation \((1/2,1/2(n-1),\ldots ,1/2(n-1))\), which is clearly better.

  4. 4.

    It can always be computed efficiently to any desired accuracy \(\varepsilon >0\) using \(\text {poly}(n,1/\varepsilon )\) samples from \(\mathcal {P}\).

References

  1. Adamczyk, M., Włodarczyk, M.: Random order contention resolution schemes. In: Foundations of Computer Science (FOCS), pp. 790ā€“801 (2018)

    Google ScholarĀ 

  2. Bansal, N., Srinivasan, A., Svensson, O.: Lift-and-round to improve weighted completion time on unrelated machines. In: Symposium on Theory of Computing, STOC, pp. 156ā€“167 (2016)

    Google ScholarĀ 

  3. Bansal, N., Sviridenko, M.: The santa claus problem. In: Symposium on Theory of Computing, STOC, pp. 31ā€“40. ACM (2006)

    Google ScholarĀ 

  4. Bertsekas, D., Gallagher, R.: Data Networks. Prentice Hall, Hoboken (1992)

    Google ScholarĀ 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    BookĀ  Google ScholarĀ 

  6. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: APPROX, pp. 84ā€“95 (2000)

    Google ScholarĀ 

  7. Charikar, M., Makarychev, K., Makarychev, Y.: Near-optimal algorithms for unique games. In: Symposium on Theory of Computing, STOC, pp. 205ā€“214 (2006)

    Google ScholarĀ 

  8. Chekuri, C., VondrĆ”k, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831ā€“1879 (2014)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  9. Cohen, M.B., Madry, A., Tsipras, D., Vladu, A.: Matrix scaling and balancing via box constrained newtonā€™s method and interior point methods. In: Symposium on Foundations of Computer Science, FOCS, pp. 902ā€“913 (2017)

    Google ScholarĀ 

  10. Dresher, M.: Theory and Applications of Games of Strategy. RAND Corporation, Santa Monica (1951)

    MATHĀ  Google ScholarĀ 

  11. Feige, U., VondrĆ”k, J.: Approximation algorithms for allocation problems: improving the factor of 1ā€“1/e. In: Symposium on Foundations of Computer Science, FOCS, pp. 667ā€“676 (2006)

    Google ScholarĀ 

  12. Feige, U., VondrĆ”k, J.: The submodular welfare problem with demand queries. Theor. Comput. 6(1), 247ā€“290 (2010)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: Symposium on Discrete Algorithms, SODA, pp. 1014ā€“1033 (2016)

    Google ScholarĀ 

  14. Hensher, D.A., Rose, J.M., Greene, W.H.: Applied Choice Analysis. Cambridge University Press, Cambridge (2015)

    Google ScholarĀ 

  15. Im, S., Shadloo, M.: Weighted completion time minimization for unrelated machines via iterative fair contention resolution. In: Symposium on Discrete Algorithms, SODA, pp. 2790ā€“2809 (2020)

    Google ScholarĀ 

  16. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620ā€“630 (1957)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  17. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Foundations of Computer Science, FOCS, pp. 312ā€“320 (1982)

    Google ScholarĀ 

  18. Kelly, F.P., Maulloo, A.K., Tan, D.K.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237ā€“252 (1998)

    ArticleĀ  Google ScholarĀ 

  19. Kohlberg, E.: On the nucleolus of a characteristic function game. SIAM J. Appl. Math. 20(1), 62ā€“66 (1971)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  20. Lee, E., Singla, S.: Optimal online contention resolution schemes via ex-ante prophet inequalities. In: European Symposium on Algorithms, ESA, volume 112 of LIPIcs, pp. 57:1ā€“57:14 (2018)

    Google ScholarĀ 

  21. Linial, N., Samorodnitsky, A., Wigderson, A.: A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents. Combinatorica 20(4), 545ā€“568 (2000)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  22. Luce, R.D.: Individual Choice Behavior: A Theoretical Analysis. Wiley, New York (1959)

    MATHĀ  Google ScholarĀ 

  23. Rothblum, U.G., Schneider, H.: Scalings of matrices which have prespecified row sums and column sums via optimization. Linear Algebra Appl. 114, 737ā€“764 (1989)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. Singh, M., Vishnoi, N.K.: Entropy, optimization and counting. In: Symposium on Theory of Computing, STOC, pp. 50ā€“59 (2014)

    Google ScholarĀ 

  25. Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35(2), 876ā€“879 (1964)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  26. Train, K.E.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2009)

    Google ScholarĀ 

  27. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational Inference. Found. TrendsĀ® Mach. Learn. 1(1ā€“2), 1ā€“305 (2008)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhil Bansal or Ilan Reuven Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bansal, N., Cohen, I.R. (2021). Contention Resolution, Matrix Scaling andĀ Fair Allocation. In: Koenemann, J., Peis, B. (eds) Approximation and Online Algorithms. WAOA 2021. Lecture Notes in Computer Science(), vol 12982. Springer, Cham. https://doi.org/10.1007/978-3-030-92702-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92702-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92701-1

  • Online ISBN: 978-3-030-92702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics