Skip to main content

Cognitive Robotic Process Automation: Concept and Impact on Dynamic IT Capabilities in Public Organizations

Part of the Progress in IS book series (PROIS)

Abstract

Robotic process automation (RPA) is considered as a significant aspect of modernizing and digitally transforming public administration towards a higher degree of automation. By adding cognitive artificial intelligence, the use of RPA can be extended, from rule-based, routine processes to more complex applications, involving semi- and unstructured information. However, we lack a clear understanding of what is meant by cognitive RPA and the impacts of RPA on public organizations’ dynamic IT capabilities. To fill this knowledge gap, we carried out a qualitative study by conducting 13 interviews with RPA system suppliers., An abductive approach was used in analyzing the interview data. We contribute with a definition and a conceptual system model of cognitive RPA and a set of propositions for how an extended notion of RPA affects dynamic IT capabilities in public sector organizations.

Keywords

  • Robotic process automation
  • Cognitive RPA
  • Artificial intelligence
  • Dynamic IT capability
  • Public organization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92644-1_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92644-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1

Notes

  1. 1.

    https://www.lexico.com/definition/robot.

  2. 2.

    https://trint.com/.

  3. 3.

    https://cloud.google.com/dialogflow.

  4. 4.

    https://www.druidai.com.

  5. 5.

    Datarobot.com.

References

  • Agostinelli, S., Marrella, A., & Mecella, M. (2019). Research challenges for intelligent robotic process automation. Paper presented at the Workshop on Artificial Intelligence for Business Process Management (AI4BPM19) held in conjuction with the 17th Int. Conference on Business Process Management (BPM’19). Vienna, Austria, September 1–6.

    Google Scholar 

  • Anagnoste, S. (2018). Setting up a robotic process automation center of excellence. Management Dynamics in the Knowledge Economy, 6(2), 307–332.

    CrossRef  Google Scholar 

  • Bharadwaj, A. S. (2000). A resource-based perspective on information technology capability and firm performance: An empirical investigation. MIS Quarterly, 24(1), 169–193.

    CrossRef  Google Scholar 

  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research Journal, 3(2), 77–101.

    Google Scholar 

  • Collins, J. (2005). Good to great and the social sectors. Independent Monograph.

    Google Scholar 

  • Dahiya, M. (2017). A tool of conversation: Chatbot. International Journal of Engineering and Computer Science, 5(5), 158–161.

    Google Scholar 

  • Davenport, T. H., & Kirby, J. (2016). Just how smart are smart machines? MIT Sloan Management Review, 57(3), 21–25.

    Google Scholar 

  • Denagama Vitharanage, I. M., Bandara, W., Syed, R., & Toman, D. (2020). An empirically supported conceptualisation of robotic process automation (RPA) benefits. Paper presented at the 28th European Conference on Information Systems (ECIS2020), Marrakesh, Morocco, June 15–17.

    Google Scholar 

  • Dias, M., Pan, S., & Tim, Y. (2019). Knowledge embodiment of human and machine interactions: Robotic-process-automation at the Finland government. Presented at the 27th European Conference on Information Systems (ECIS2019), Stockholm Uppsala, Sweden, June 8–14.

    Google Scholar 

  • Dubois, A., & Gadde, L. E. (2002). Systematic combining: An abductive approach to case research. Journal of Business Research, 55(7), 553–560.

    CrossRef  Google Scholar 

  • Eikebrokk, T. R., & Olsen, D. H. (2020). Robotic process automation and consequences for knowledge workers; a mixed-method study. In M. Hattingh, M. Matthee, H. Smuts, I. Pappas, Y. K. Dwivedi, & M. Mäntymäki (Eds.), Responsible design, implementation and use of information and communication technology (Vol. 12066, pp. 114–125). Springer International Publishing. https://doi.org/10.1007/978-3-030-44999-5_10

    CrossRef  Google Scholar 

  • Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21(10–11), 1105–1121.

    CrossRef  Google Scholar 

  • Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme development. International Journal of Qualitative Methods, 5(1), 80–92.

    CrossRef  Google Scholar 

  • Forrester Research. (2014). Building a Center of Expertise to Support Robotic Automation. A Forrester Consulting Thought Leadership Paper Commissioned by Blue Prism.

    Google Scholar 

  • Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., & Veit, F. (2018). Process mining and robotic process automation: A perfect match. In Proceedings of the Dissertation Award, Demonstration, and Industrial Track at BPM 2018. CEUR Workshop Proceedings (Vol. 2196, pp. 124–131).

    Google Scholar 

  • Goday-Verdaguer, A., Mannhardt, F., & Torvatn, H. Y. (2020). Mining e-mail conversations to enrich event logs: An exploratory case study of a hiring process in a Norwegian municipality. In Norsk konferanse for organisasjoners bruk at IT (Vol. 28, No. 1).

    Google Scholar 

  • Guest, G., MacQueen, K. M., & Namey, E. E. (2011). Introduction to applied thematic analysis. In V. Knight, A. Virding, A. Rosenstein, & A. Hutchinson (Eds.), Applied thematic analysis. Sage Publications, Ltd.

    Google Scholar 

  • Houy, C., Hamberg, M., & Fettke, P. (2019). Robotic process automation in public administrations. Digitalisierung von Staat und Verwaltung. Lecture Notes in Informatics (Vol. 291). Köllen.

    Google Scholar 

  • Jimenez-Ramirez, A., Reijers, H. A., Barba, I., & Del Valle, C. (2019). A method to improve the early stages of the robotic process automation lifecycle. In P. Giorgini & B. Weber (Eds.), Advanced information systems engineering (pp. 446–461).

    CrossRef  Google Scholar 

  • Kallinikos, J. (2004). Deconstructing information packages – Organizational and behavioural implications of ERP systems. Information Technology & People, 17(1), 8–30.

    CrossRef  Google Scholar 

  • Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.

    CrossRef  Google Scholar 

  • Kirchmer, M., & Franz, P. (2019). Value-Driven Robotic Process Automation (RPA). In B. Shishkov (Ed.), Business Modeling and Software Design (BMSD 2019). Lecture Notes in Business Information Processing (Vol. 356). Springer. https://doi.org/10.1007/978-3-030-24854-3_3

    CrossRef  Google Scholar 

  • Lacity, M. C., & Willcocks, L. P. (2016). A new approach to automating services. MIT Sloan Management Review, 58(1), 41–49.

    Google Scholar 

  • Lazarus, S. (2018). Achieving a successful robotic process automation implementation: A case study of Vodafone and Celonis. Retrieved June 21, 2021, from https://spendmatters.com/2018/06/07/achieving-a-successful-robotic-process-automation-implementation-a-case-study-of-vodafone-and-celonis/

  • Li, T. C., & Chan, Y. E. (2019). Dynamic information technology capability: Concept definition and framework development. The Journal of Strategic Information Systems, 28(4), 101575.

    CrossRef  Google Scholar 

  • Lindgren, I. (2020). Exploring the use of robotic process automation in local government. EGOV-CeDEM-ePart, 2020, 249.

    Google Scholar 

  • Martins, P., Sá, F., Morgado, F., & Cunha, C. (2020). Using machine learning for cognitive Robotic Process Automation (RPA). Paper presented at the 15th Iberian Conference on Information Systems and Technologies (CISTI 2020), Sevilla, Spain, 24–27 June.

    Google Scholar 

  • Mora, M., Gelman, O., Paradice, D., & Cervantes, F. (2008, May). The case for conceptual research in information systems. In CONF-IRM 2008 Proceedings (p. 52).

    Google Scholar 

  • Myers, M. D., & Avison, D. (Eds.). (2002). Qualitative research in information systems: A reader. Sage.

    Google Scholar 

  • Nauwerck, G., & Cajander, A. (2019). Automatic for the people: Implementing robotic process automation in social work. Presented at the 17th European Conference on Computer-Supported Cooperative Work (ECSCW 2019), Salzburg, Austria, 8–12 June 2019.

    Google Scholar 

  • Pablo, A. L., Reay, T., Dewald, J. R., & Casebeer, A. L. (2007). Identifying, enabling and managing dynamic capabilities in the public sector. Journal of Management Studies, 44(5), 687–708.

    CrossRef  Google Scholar 

  • Patil, S., Mane, V., & Patil, P. (2019). Social innovation in education system by using Robotic Process Automation (RPA). International Journal of Innovative Technology and Exploring Engineering, 8(11), 3757–3760.

    CrossRef  Google Scholar 

  • Penttinen, E., Kasslin, H., & Asatiani, A. (2018). How to choose between robotic process automation and back-end system automation? Presented at the 28th European Conference on Information Systems (ECIS 2018), Portsmouth, UK, 23–28 June.

    Google Scholar 

  • Ranerup, A. (2020). Translating robotic process automation in social work: Aspirational changes and the role of technology. Presented at the 11th Scandinavian Conference on Information Systems (SCIS 2020) Sundsvall, Sweden, 9–11 August.

    Google Scholar 

  • Ranerup, A., & Henriksen, H. Z. (2019). Value positions viewed through the lens of automated decision-making: The case of social services. Government Information Quarterly, 36(4), 101377.

    CrossRef  Google Scholar 

  • Ranerup, A., & Henriksen, H. Z. (2020). Digital discretion: Unpacking human and technological agency in automated decision making in Sweden’s social services. Social Science Computer Review. https://doi.org/10.1177/0894439320980434

  • Ray, S., Villa, A., Tornbohm, C., Rashid, N., & Alexander, M. (2020). Magic quadrant for robotic process automation (Vol. 441474). Gartner Inc.

    Google Scholar 

  • Sarker, S., Chatterjee, S., Xiao, X., & Elbanna, A. (2019). The sociotechnical axis of cohesion for the IS discipline: Its historical legacy and its continued relevance. MIS Quarterly, 43(3), 695–720.

    CrossRef  Google Scholar 

  • Schultze, U., & Avital, M. (2011). Designing interviews to generate rich data for information systems research. Information and Organization, 21(1), 1–16.

    CrossRef  Google Scholar 

  • Singh, A., Ramasubramanian, K., & Shivam, S. (2019). Building an enterprise chatbot: Work with protected enterprise data using open source frameworks. Apress Media LLC.

    CrossRef  Google Scholar 

  • Stolpe, A., Steinsund, H., Iden, J., & Bygstad, B. (2017, November). Lightweight IT and the IT function: Experiences from robotic process automation in a Norwegian bank. Presented at the Norsk konferanse for organisasjoners bruk at IT (NOKOBIT 2017), Oslo, Norway, 27–29 November.

    Google Scholar 

  • Suri, V. K., Elia, M. D., Arora, P., & van Hillegersberg, J. (2018). Automation of knowledge-based shared services and centers of expertise. Presented at the 12th Global Sourcing Workshop, La Thuile, Italy, 21–24 February.

    Google Scholar 

  • Swanson, E. B. (2019). Technology as routine capability. MIS Quarterly, 43(3), 1007–1024.

    CrossRef  Google Scholar 

  • Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S. J., Ouyang, C., … Reijers, H. A. (2020). Robotic process automation: Contemporary themes and challenges. Computers in Industry, 115, 103162.

    CrossRef  Google Scholar 

  • Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533.

    CrossRef  Google Scholar 

  • van de Weerd, I., Nieuwenhuijs, B., Bex, F., & Beerepoot, I. (2021). Using AI to augment RPA: A conceptual framework. Presented at the 29th European Conference on Information Systems (ECIS 2021), Marakesh, Morocco, 14–16 June.

    Google Scholar 

  • Van Der Aalst, W. (2012). Process mining. Communications of the ACM, 55(8), 76–83.

    CrossRef  Google Scholar 

  • van der Aalst, W. M. (2020). On the Pareto principle in process mining, task mining, and robotic process automation. In DATA (pp. 5–12).

    Google Scholar 

  • van der Aalst, W. M., Bichler, M., & Heinzl, A. (2018). Robotic process automation. Business & Information Systems Engineering, 60(4), 269–272.

    CrossRef  Google Scholar 

  • Viehhauser, J. (2020). Is robotic process automation becoming intelligent? Early evidence of influences of artificial intelligence on robotic process automation. Presented at the 18th International Conference on Business Process Management (BPM 2020), Sevilla, Spain, 13–18 September.

    Google Scholar 

  • von Bertalanffy, L. (1968). General system theory: Foundations, development, applications. George Braziller.

    Google Scholar 

  • Willcocks, L., Lacity, M., & Craig, A. (2015). The IT function and robotic process automation. The Outsourcing Unit Working Research Paper Series, London School of Economics and Political Science, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustaf Juell-Skielse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Juell-Skielse, G., Balasuriya, P., Güner, E.O., Han, S. (2022). Cognitive Robotic Process Automation: Concept and Impact on Dynamic IT Capabilities in Public Organizations. In: Juell-Skielse, G., Lindgren, I., Åkesson, M. (eds) Service Automation in the Public Sector. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-030-92644-1_4

Download citation