Abstract
Lactose malabsorption occurs when the milk sugar, lactose, is not hydrolysed and absorbed in the small intestine, usually because of reduced levels of lactase, an intestinal specific β-galactosidase (EC 3.2.1.108), otherwise known as lactase–phlorizin hydrolase (LPH, because of its additional activities). Instead, the lactose is digested by bacteria in the colon, and this can cause symptoms of lactose intolerance. In humans, the persistence of lactase in adults is a genetically controlled polymorphic trait that varies in frequency between populations. Several single-nucleotide variants that associate with lactase persistence occur upstream of the lactase gene (LCT). One variant (–13910*T) predominates in Europe, and the others (–13907*G, –13915*G, –14010*C, –14009*G) have distinct geographical distributions. These variants are thought to allow LCT to escape developmentally programmed down-regulation. Evidence from geographic distributions, lifestyle association and molecular genetics indicates that lactase persistence has been very advantageous in some populations, although the specific selective advantage is uncertain and is likely to vary between populations. In individuals who cannot digest lactose, symptoms of lactose intolerance (note that this is distinct from immunological intolerance to other components of milk) can be avoided by consuming smaller quantities of milk or reduced lactose products such as yoghurts and cheese. Whilst genetic testing of –13910*T in Europeans with irritable bowel syndrome may aid differential diagnosis, this test cannot be considered useful in other populations or in individuals of mixed ancestry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almon, R., Álvarez-León, E. E., & Serra-Majem, L. (2012). Association of the European lactase persistence variant (LCT-13910 C>T Polymorphism) with obesity in the Canary Islands. PLoS One, 7, e43978. https://doi.org/10.1371/journal.pone.0043978
Anderson, B., & Vullo, C. (1994). Did malaria select for primary adult lactase deficiency? Gut, 35, 1487–1489. https://doi.org/10.1136/gut.35.10.1487
Anguita-Ruiz, A., Aguilera, C. M., & Gil, Á. (2020). Genetics of lactose intolerance: An updated review and online interactive world maps of phenotype and genotype frequencies. Nutrients, 12, 2689. https://doi.org/10.3390/nu12092689
Aoki, K. (1986). A stochastic model of gene-culture coevolution suggested by the ‘culture historical hypothesis’ for the evolution of adult lactose absorption in humans. Proceedings of the National Academy of Sciences of the United States of America, 83, 2929–2933. https://doi.org/10.1073/pnas.83.9.2929
Arribas, J. C. D., Herrero, A. G., Martín-Lomas, M., Cañada, F. J., He, S., & Withers, S. G. (2000). Differential mechanism-based labeling and unequivocal activity assignment of the two active sites of intestinal lactase/phlorizin hydrolase: Labeling of two active sites of intestinal lactase. European Journal of Biochemistry, 267, 6996–7005. https://doi.org/10.1046/j.1432-1327.2000.01784.x
Auricchio, S., Landolt, M., Rubino, A., Semenza, G., & Prader, A. (1963). Isolated intestinal lactase deficiency in the adult. Lancet, 282, 324–326. https://doi.org/10.1016/S0140-6736(63)92991-X
Bayoumi, R. A. L., Saha, N., Salih, A. S., Bakkar, A. E., & Flatz, G. (1981). Distribution of the lactase phenotypes in the population of the Democratic Republic of the Sudan. Human Genetics, 57, 279–281. https://doi.org/10.1007/BF00278944
Bayoumi, R. A. L., Flatz, S. D., Kühnau, W., & Flatz, G. (1982). Beja and Nilotes: Nomadic pastoralist groups in the Sudan with opposite distributions of the adult lactase phenotypes. American Journal of Physical Anthropology, 58, 173–178. https://doi.org/10.1002/ajpa.1330580208
Beck, F. (2004). The role of Cdx genes in the mammalian gut. Gut, 53, 1394–1396. https://doi.org/10.1136/gut.2003.038240
Beja-Pereira, A., Luikart, G., England, P. R., Bradley, D. G., Jann, O. C., Bertorelle, G., Chamberlain, A. T., Nunes, T. P., Metodiev, S., Ferrand, N., & Erhardt, G. (2003). Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics, 35, 311–313. https://doi.org/10.1038/ng1263
Bekele, T., Lundeheim, N., & Dahlborn, K. (2011). Milk production and feeding behavior in the camel (Camelus dromedarius) during 4 watering regimens. Journal of Dairy Science, 94, 1310–1317. https://doi.org/10.3168/jds.2010-3654
Bergholdt, H. K., Nordestgaard, B. G., & Ellervik, C. (2015). Milk intake is not associated with low risk of diabetes or overweight-obesity: A Mendelian randomization study in 97,811 Danish individuals. The American Journal of Clinical Nutrition, 102, 487–496. https://doi.org/10.3945/ajcn.114.105049
Bergholdt, H. K. M., Larsen, M. K., Varbo, A., Nordestgaard, B. G., & Ellervik, C. (2018a). Lactase persistence, milk intake, hip fracture and bone mineral density: A study of 97 811 Danish individuals and a meta-analysis. Journal of Internal Medicine, 284, 254–269. https://doi.org/10.1111/joim.12753
Bergholdt, H. K. M., Nordestgaard, B. G., Varbo, A., & Ellervik, C. (2018b). Lactase persistence, milk intake, and mortality in the Danish general population: A Mendelian randomization study. European Journal of Epidemiology, 33, 171–181. https://doi.org/10.1007/s10654-017-0328-x
Bersaglieri, T., Sabeti, P. C., Patterson, N., Vanderploeg, T., Schaffner, S. F., Drake, J. A., Rhodes, M., Reich, D. E., & Hirschhorn, J. N. (2004). Genetic signatures of strong recent positive selection at the lactase gene. American Journal of Human Genetics, 74, 1111–1120. https://doi.org/10.1086/421051
Bleasdale, M., Richter, K. K., Janzen, A., Brown, S., Scott, A., Zech, J., Wilkin, S., Wang, K., Schiffels, S., Desideri, J., Besse, M., Reinold, J., Saad, M., Babiker, H., Power, R. C., Ndiema, E., Ogola, C., Manthi, F. K., Zahir, M., Petraglia, M., Trachsel, C., Nanni, P., Grossmann, J., Hendy, J., Crowther, A., Roberts, P., Goldstein, S. T., & Boivin, N. (2021). Ancient proteins provide evidence of dairy consumption in eastern Africa. Nature Communications, 12, 632. https://doi.org/10.1038/s41467-020-20682-3
Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., Spector, T. D., Keinan, A., Ley, R. E., Gevers, D., & Clark, A. G. (2015). Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 16, 191. https://doi.org/10.1186/s13059-015-0759-1
Bloom, G., & Sherman, P. W. (2005). Dairying barriers affect the distribution of lactose malabsorption. Evolution and Human Behavior, 26, 301–312. https://doi.org/10.1016/j.evolhumbehav.2004.10.002
Boll, W., Wagner, P., & Mantei, N. (1991). Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. American Journal of Human Genetics, 48, 889–902.
Bond, J. H., & Levitt, M. D. (1976). Quantitative measurement of lactose absorption. Gastroenterology, 70, 1058–1062.
Bonder, M. J., Kurilshikov, A., Tigchelaar, E. F., Mujagic, Z., Imhann, F., Vila, A. V., Deelen, P., Vatanen, T., Schirmer, M., Smeekens, S. P., Zhernakova, D. V., Jankipersadsing, S. A., Jaeger, M., Oosting, M., Cenit, M. C., Masclee, A. A. M., Swertz, M. A., Li, Y., Kumar, V., Joosten, L., Harmsen, H., Weersma, R. K., Franke, L., Hofker, M. H., Xavier, R. J., Jonkers, D., Netea, M. G., Wijmenga, C., Fu, J., & Zhernakova, A. (2016). The effect of host genetics on the gut microbiome. Nature Genetics, 48, 1407–1412. https://doi.org/10.1038/ng.3663
Bosse, T., van Wering, H. M., Gielen, M., Dowling, L. N., Fialkovich, J. J., Piaseckyj, C. M., Gonzalez, F. J., Akiyama, T. E., Montgomery, R. K., Grand, R. J., & Krasinski, S. D. (2006). Hepatocyte nuclear factor-1α is 6 Lactose Malabsorption required for expression but dispensable for histone acetylation of the lactase-phlorizin hydrolase gene in vivo. American Journal of Physiology. Gastrointestinal and Liver Physiology, 290, G1016–G1024. https://doi.org/10.1152/ajpgi.00359.2005
Boudreau, F., Rings, E. H. H. M., van Wering, H. M., Kim, R. K., Swain, G. P., Krasinski, S. D., Moffett, J., Grand, R. J., Suh, E. R., & Traber, P. G. (2002). Hepatocyte nuclear factor-1α, GATA-4, and caudal related homeodomain protein Cdx2 interact functionally to modulate intestinal gene transcription: Implication for the developmental regulation of the sucrase-isomaltase gene. The Journal of Biological Chemistry, 277, 31909–31917. https://doi.org/10.1074/jbc.M204622200
Brasen, C. L., Frischknecht, L., Ørnskov, D., Andreasen, L., & Madsen, J. S. (2017). Combination of real-time PCR and sequencing to detect multiple clinically relevant genetic variations in the lactase gene. Scandinavian Journal of Clinical and Laboratory Investigation, 77, 60–65. https://doi.org/10.1080/00365513.2016.1261408
Briet, F., Pochart, P., Marteau, P., Flourie, B., Arrigoni, E., & Rambaud, J. C. (1997). Improved clinical tolerance to chronic lactose ingestion in subjects with lactose intolerance: A placebo effect? Gut, 41, 632–635. https://doi.org/10.1136/gut.41.5.632
Büller, H. A., Kothe, M. J., Goldman, D. A., Grubman, S. A., Sasak, W. V., Matsudaira, P. T., Montgomery, R. K., & Grand, R. J. (1990). Coordinate expression of lactase-phlorizin hydrolase mRNA and enzyme levels in rat intestine during development. The Journal of Biological Chemistry, 265, 6978–6983.
Burch, J. B. E. (2005). Regulation of GATA gene expression during vertebrate development. Seminars in Cell & Developmental Biology, 16, 71–81. https://doi.org/10.1016/j.semcdb.2004.10.002
Burger, J., Kirchner, M., Bramanti, B., Haak, W., & Thomas, M. G. (2007). Absence of the lactase-persistence-associated allele in early neolithic Europeans. Proceedings of the National Academy of Sciences, 104, 3736–3741. https://doi.org/10.1073/pnas.0607187104
Carroccio, A., Montalto, G., Cavera, G., & Notarbatolo, A. (1998). Lactose intolerance and self-reported milk intolerance: Relationship with lactose maldigestion and nutrient intake. Lactase Deficiency Study Group. Journal of the American College of Nutrition, 17, 631–636. https://doi.org/10.1080/07315724.1998.10718813
Charati, H., Jabbari Ori, R., Aghajanpour-Mir, M., Esmailizadeh, A., & Zhang, Y. (2020). The lactase persistence allele –22018 G/A associated with body mass index in an Asian population. Gene Reports, 19, 100621. https://doi.org/10.1016/j.genrep.2020.100621
Chitkara, D. K., Chumpitazi, B., Krasinski, S. D., Grand, R. J., & Montgomery, R. K. (2001). Regulation of human lactase-phlorizin hydrolase (LPH) gene by proteins binding to sites 5′ to the alu sequence. Gastroenterology, 120, A304. https://doi.org/10.1016/S0016-5085(08)81508-9
Coelho, M., Luiselli, D., Bertorelle, G., Lopes, A. I., Seixas, S., Destro-Bisol, G., & Rocha, J. (2005). Microsatellite variation and evolution of human lactase persistence. Human Genetics, 117, 329–339. https://doi.org/10.1007/s00439-005-1322-z
Colombo, V., Lorenz-Meyer, H., & Semenza, G. (1973). Small intestinal phlorizin hydrolase: The “β-glycosidase complex”. Biochimica et Biophysica Acta (BBA) - Enzymology, 327, 412–424. https://doi.org/10.1016/0005-2744(73)90425-7
Cook, G. C. (1988). Human intestinal lactase and Lamarckian evolution. Lancet, 332, 1029. https://doi.org/10.1016/S0140-6736(88)90798-2
Cook, G. C., & al-Torki, M. T. (1975). High intestinal lactase concentrations in adult Arabs in Saudi Arabia. BMJ, 3, 135–136. https://doi.org/10.1136/bmj.3.5976.135
Cordain, L., Hickey, M. S., & Kim, K. (2012). Malaria and rickets represent selective forces for the convergent evolution of adult lactase persistence. In P. Gepts, T. R. Famula, R. L. Bettinger, S. B. Brush, A. B. Damania, P. E. McGuire, & C. O. Qualset (Eds.), Biodiversity in agriculture (pp. 299–308). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139019514.016
Corella, D., Arregui, M., Coltell, O., Portolés, O., Guillem-Sáiz, P., Carrasco, P., Sorlí, J. V., Ortega-Azorín, C., González, J. I., & Ordovás, J. M. (2011). Association of the LCT-13910C>T polymorphism with obesity and its modulation by dairy products in a Mediterranean population. Obesity, 19, 1707–1714. https://doi.org/10.1038/oby.2010.320
Crittenden, R. G., & Bennett, L. E. (2005). Cow’s milk allergy: A complex disorder. Journal of the American College of Nutrition, 24, 582S–591S. https://doi.org/10.1080/07315724.2005.10719507
Dahlqvist, A., Hammond, J. B., Crane, R. K., Dunphy, J. V., & Littman, A. (1968). Intestinal lactase deficiency and lactose intolerance in adults. Preliminary report. Gastroenterology, 54(Suppl), 807–810.
Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A., Mclauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R. A., & Williamson, G. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468, 166–170. https://doi.org/10.1016/S0014-5793(00)01211-4
Dissanayake, A. S., El-Munshid, H. A., Al-Quorain, A., Al-Breiki, H., Al-Idrissi, H. Y., & Wosornu, L. (1990). Prevalence of primary adult lactose malabsorption in the eastern province of Saudi Arabia. Annals of Saudi Medicine, 10, 598–601. https://doi.org/10.5144/0256-4947.1990.598
Drouin-Chartier, J.-P., Brassard, D., Tessier-Grenier, M., Côté, J. A., Labonté, M.-È., Desroches, S., Couture, P., & Lamarche, B. (2016). Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Advances in Nutrition, 7, 1026–1040. https://doi.org/10.3945/an.115.011403
Dutta, P. (1991). Enhanced uptake and metabolism of riboflavin in erythrocytes infected with Plasmodium falciparum. The Journal of Protozoology, 38, 479–483. https://doi.org/10.1111/j.1550-7408.1991.tb04820.x
Enattah, N. S., Sahi, T., Savilahti, E., Terwilliger, J. D., Peltonen, L., & Järvelä, I. (2002). Identification of a variant associated with adult-type hypolactasia. Nature Genetics, 30, 233–237. https://doi.org/10.1038/ng826
Enattah, N. S., Forsblom, C., Rasinperä, H., Tuomi, T., Groop, P.-H., Järvelä, I., & The FinnDiane Study Group. (2004). The genetic variant of lactase persistence C (–13910) T as a risk factor for type I and II diabetes in the Finnish population. European Journal of Clinical Nutrition, 58, 1319–1322. https://doi.org/10.1038/sj.ejcn.1601971
Enattah, N. S., Pekkarinen, T., Välimäki, M. J., Löyttyniemi, E., & Järvelä, I. (2005). Genetically defined adult-type hypolactasia and self-reported lactose intolerance as risk factors of osteoporosis in Finnish postmenopausal women. European Journal of Clinical Nutrition, 59, 1105–1111. https://doi.org/10.1038/sj.ejcn.1602219
Enattah, N. S., Jensen, T. G. K., Nielsen, M., Lewinski, R., Kuokkanen, M., Rasinpera, H., El-Shanti, H., Seo, J. K., Alifrangis, M., Khalil, I. F., Natah, A., Ali, A., Natah, S., Comas, D., Mehdi, S. Q., Groop, L., Vestergaard, E. M., Imtiaz, F., Rashed, M. S., Meyer, B., Troelsen, J., & Peltonen, L. (2008). Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. American Journal of Human Genetics, 82, 57–72. https://doi.org/10.1016/j.ajhg.2007.09.012
Evershed, R. P., Payne, S., Sherratt, A. G., Copley, M. S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., Özdoğan, M., Özdoğan, A. E., Nieuwenhuyse, O., Akkermans, P. M. M. G., Bailey, D., Andeescu, R.-R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Özbaşaran, M., Bıçakcı, E., Garfinkel, Y., Levy, T., & Burton, M. M. (2008). Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 455, 528–531. https://doi.org/10.1038/nature07180
Fang, R., Santiago, N. A., Olds, L. C., & Sibley, E. (2000). The homeodomain protein Cdx2 regulates lactase gene promoter activity during enterocyte differentiation. Gastroenterology, 118, 115–127. https://doi.org/10.1016/S0016-5085(00)70420-3
Fang, R., Olds, L. C., Santiago, N. A., & Sibley, E. (2001). GATA family transcription factors activate lactase gene promoter in intestinal Caco-2 cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280, G58–G67. https://doi.org/10.1152/ajpgi.2001.280.1.G58
FAO. (2013). Milk and dairy products in human nutrition. Rome: FAO.
Fassio, F., Facioni, M., & Guagnini, F. (2018). Lactose maldigestion, malabsorption, and intolerance: A comprehensive review with a focus on current management and future perspectives. Nutrients, 10, 1599. https://doi.org/10.3390/nu10111599
Ferguson, A., & Maxwell, J. D. (1967). Genetic ætiology of lactose intolerance. Lancet, 290, 188–191. https://doi.org/10.1016/S0140-6736(67)90009-8
Fitzgerald, K., Bazar, L., & Avigan, M. I. (1998). GATA-6 stimulates a cell line-specific activation element in the human lactase promoter. American Journal of Physiology. Gastrointestinal and Liver Physiology, 274, G314–G324. https://doi.org/10.1152/ajpgi.1998.274.2.G314
Flatz, G. (1984). Gene-dosage effect on intestinal lactase activity demonstrated in vivo. American Journal of Human Genetics, 36, 306–310.
Flatz, G., & Rotthauwe, H. (1973). Lactose nutrition and natural selection. Lancet, 302, 76–77. https://doi.org/10.1016/S0140-6736(73)93267-4
Fontecha, J., Calvo, M. V., Juarez, M., Gil, A., & Martínez-Vizcaino, V. (2019). Milk and dairy product consumption and cardiovascular diseases: An overview of systematic reviews and metaanalyses. Advances in Nutrition, 10, S164–S189. https://doi.org/10.1093/advances/nmy099
Gallego Romero, I., Basu Mallick, C., Liebert, A., Crivellaro, F., Chaubey, G., Itan, Y., Metspalu, M., Eaaswarkhanth, M., Pitchappan, R., Villems, R., Reich, D., Singh, L., Thangaraj, K., Thomas, M. G., Swallow, D. M., Mirazón Lahr, M., & Kivisild, T. (2012). Herders of Indian and European cattle share their predominant allele for lactase persistence. Molecular Biology and Evolution, 29, 249–260. https://doi.org/10.1093/molbev/msr190
Gao, X., Sedgwick, T., Shi, Y.-B., & Evans, T. (1998). Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Molecular and Cellular Biology, 18, 2901–2911. https://doi.org/10.1128/MCB.18.5.2901
Gerbault, P., Moret, C., Currat, M., & Sanchez-Mazas, A. (2009). Impact of selection and demography on the diffusion of lactase persistence. PLoS One, 4, e6369. https://doi.org/10.1371/journal.pone.0006369
Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., Swallow, D. M., & Thomas, M. G. (2011). Evolution of lactase persistence: An example of human niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 863–877. https://doi.org/10.1098/rstb.2010.0268
Gijsbers, L., Ding, E. L., Malik, V. S., de Goede, J., Geleijnse, J. M., & Soedamah-Muthu, S. S. (2016). Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. The American Journal of Clinical Nutrition, 103, 1111–1124. https://doi.org/10.3945/ajcn.115.123216
Gilat, T. (1971). Lactase—An adaptable enzyme? Gastroenterology, 60, 346–347.
Goodrich, J. K., Davenport, E. R., Beaumont, M., Jackson, M. A., Knight, R., Ober, C., Spector, T. D., Bell, J. T., Clark, A. G., & Ley, R. E. (2016). Genetic determinants of the gut microbiome in UK twins. Cell Host & Microbe, 19, 731–743. https://doi.org/10.1016/j.chom.2016.04.017
Goodrich, J. K., Davenport, E. R., Clark, A. G., & Ley, R. E. (2017). The relationship between the human genome and microbiome comes into view. Annual Review of Genetics, 51, 413–433. https://doi.org/10.1146/annurev-genet-110711-155532
Grünberg, J., & Sterchi, E. E. (1995). Human lactase–phlorizin hydrolase: Evidence of dimerization in the endoplasmic reticulum. Archives of Biochemistry and Biophysics, 323, 367–372. https://doi.org/10.1006/abbi.1995.9952
Guéguen, L., & Pointillart, A. (2000). The bioavailability of dietary calcium. Journal of the American College of Nutrition, 19, 119S–136S. https://doi.org/10.1080/07315724.2000.10718083
Gugatschka, M., Dobnig, H., Fahrleitner-Pammer, A., Pietschmann, P., Kudlacek, S., Strele, A., & Obermayer-Pietsch, B. (2005). Molecularly-defined lactose malabsorption, milk consumption and anthropometric differences in adult males. Quarterly Journal of Medicine, 98, 857–863. https://doi.org/10.1093/qjmed/hci140
Gutiérrez, I., Espinosa, A., García, J., Carabaño, R., & De Blas, J. C. (2002). Effect of levels of starch, fiber, and lactose on digestion and growth performance of early-weaned rabbits. Journal of Animal Science, 80, 1029–1037. https://doi.org/10.2527/2002.8041029x
Hartwig, F. P., Horta, B. L., Smith, G. D., de Mola, C. L., & Victora, C. G. (2016). Association of lactase persistence genotype with milk consumption, obesity and blood pressure: A Mendelian randomization study in the 1982 Pelotas (Brazil) Birth Cohort, with a systematic review and meta-analysis. International Journal of Epidemiology, 45, 1573–1587. https://doi.org/10.1093/ije/dyw074
Harvey, C. B., Pratt Isa Islam, W. S., Whitehouse, D. B., & Swallow, D. (1995). DNA Polymorphisms in the lactase gene: Linkage disequilibrium across the 70kb region. European Journal of Human Genetics, 3, 27–41. https://doi.org/10.1159/000472271
Harvey, C. B., Hollox, E. J., Poulter, M., Wang, Y., Rossi, M., Auricchio, S., Iqbal, T. H., Cooper, B. T., Barton, R., Sarner, M., Korpela, R., & Swallow, D. M. (1998). Lactase haplotype frequencies in Caucasians: Association with the lactase persistence/non-persistence polymorphism. Annals of Human Genetics, 62, 215–223. https://doi.org/10.1046/j.1469-1809.1998.6230215.x
Helmer, D., Gourichon, L., & Vila, E. (2007). The development of the exploitation of products from Capra and Ovis (meat, milk and fleece) from the PPNB to the Early Bronze in the northern Near East. Anthropozoologica, 42, 41–69.
Hermisson, J., & Pennings, P. S. (2005). Soft Sweeps: Molecular population genetics of adaptation from standing genetic variation. Genetics, 169, 2335–2352. https://doi.org/10.1534/genetics.104.036947
Hertzler, S. R., & Savaiano, D. A. (1996). Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. The American Journal of Clinical Nutrition, 64, 232–236. https://doi.org/10.1093/ajcn/64.2.232
Hertzler, S. R., Savaiano, D. A., & Levitt, M. D. (1997). Fecal hydrogen production and consumption measurements—Response to daily lactose ingestion by lactose maldigesters. Digestive Diseases and Sciences, 42, 348–353. https://doi.org/10.1023/A:1018822103911
Hijazi, S. S., Abulaban, A., Ammarin, Z., & Flatz, G. (1983). Distribution of adult lactase phenotypes in Bedouins and in urban and agricultural populations of Jordan. Tropical and Geographical Medicine, 35, 157–161.
Ho, M. W., Povey, S., & Swallow, D. (1982). Lactase polymorphism in adult British natives: Estimating allele frequencies by enzyme assays in autopsy samples. American Journal of Human Genetics, 34, 650–657.
Holden, C., & Mace, R. (1997). Phylogenetic analysis of the evolution of lactose digestion in adults. Human Biology, 69, 605–628.
Holick, M. F. (2007). Vitamin D deficiency. The New England Journal of Medicine, 357, 266–281. https://doi.org/10.1056/NEJMra070553
Hollox, E. J., Poulter, M., Wang, Y., Krause, A., & Swallow, D. M. (1999). Common polymorphism in a highly variable region upstream of the human lactase gene affects DNA-protein interactions. European Journal of Human Genetics, 7, 791–800. https://doi.org/10.1038/sj.ejhg.5200369
Hollox, E. J., Poulter, M., Zvarik, M., Ferak, V., Krause, A., Jenkins, T., Saha, N., Kozlov, A. I., & Swallow, D. M. (2001). Lactase haplotype diversity in the Old World. American Journal of Human Genetics, 68, 160–172. https://doi.org/10.1086/316924
Imtiaz, F., Savilahti, E., Sarnesto, A., Trabzuni, D., Al-Kahtani, K., Kagevi, I., Rashed, M. S., Meyer, B. F., & Jarvela, I. (2007). The T/G 13915 variant upstream of the lactase gene (LCT) is the founder allele of lactase persistence in an urban Saudi population. Journal of Medical Genetics, 44, e89. https://doi.org/10.1136/jmg.2007.051631
Ingram, C. J. E., Elamin, M. F., Mulcare, C. A., Weale, M. E., Tarekegn, A., Raga, T. O., Bekele, E., Elamin, F. M., Thomas, M. G., Bradman, N., & Swallow, D. M. (2007). A novel polymorphism associated with lactose tolerance in Africa: Multiple causes for lactase persistence? Human Genetics, 120, 779–788. https://doi.org/10.1007/s00439-006-0291-1
Ingram, C. J. E., Mulcare, C. A., Itan, Y., Thomas, M. G., & Swallow, D. M. (2009a). Lactose digestion and the evolutionary genetics of lactase persistence. Human Genetics, 124, 579–591. https://doi.org/10.1007/s00439-008-0593-6
Ingram, C. J. E., Raga, T. O., Tarekegn, A., Browning, S. L., Elamin, M. F., Bekele, E., Thomas, M. G., Weale, M. E., Bradman, N., & Swallow, D. M. (2009b). Multiple rare variants as a cause of a common phenotype: Several different lactase persistence associated alleles in a single ethnic group. Journal of Molecular Evolution, 69, 579–588. https://doi.org/10.1007/s00239-009-9301-y
Itan, Y., Powell, A., Beaumont, M. A., Burger, J., & Thomas, M. G. (2009). The origins of lactase persistence in Europe. PLoS Computational Biology, 5, e1000491. https://doi.org/10.1371/journal.pcbi.1000491
Itan, Y., Jones, B. L., Ingram, C. J., Swallow, D. M., & Thomas, M. G. (2010). A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evolutionary Biology, 10, 36. https://doi.org/10.1186/1471-2148-10-36
Jacob, F., & Monod, J. (1961). On the regulation of gene activity. Cold Spring Harbor Symposia on Quantitative Biology, 26, 193–211. https://doi.org/10.1101/SQB.1961.026.01.024
Janukonyté, J., Vestergaard, E. M., Ladefoged, S. A., & Nissen, P. H. (2010). High-resolution melting analysis using unlabeled probe and amplicon scanning simultaneously detects several lactase persistence variants. Scandinavian Journal of Clinical and Laboratory Investigation, 70, 535–540. https://doi.org/10.3109/00365513.2010.522251
Jellema, P., Schellevis, F. G., van der Windt, D. A. W. M., Kneepkens, C. M. F., & van der Horst, H. E. (2010). Lactose malabsorption and intolerance: A systematic review on the diagnostic value of gastrointestinal symptoms and self-reported milk intolerance. Quarterly Journal of Medicine, 103, 555–572. https://doi.org/10.1093/qjmed/hcq082
Jensen, T. G. K., Liebert, A., Lewinsky, R., Swallow, D. M., Olsen, J., & Troelsen, J. T. (2011). The –14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1α binding site and increases lactase promoter activity. Human Genetics, 130, 483–493. https://doi.org/10.1007/s00439-011-0966-0
Jones, B. L., Raga, T. O., Liebert, A., Zmarz, P., Bekele, E., Danielsen, E. T., Olsen, A. K., Bradman, N., Troelsen, J. T., & Swallow, D. M. (2013). Diversity of lactase persistence alleles in Ethiopia: Signature of a soft selective sweep. American Journal of Human Genetics, 93, 538–544. https://doi.org/10.1016/j.ajhg.2013.07.008
Jones, B. L., Oljira, T., Liebert, A., Zmarz, P., Montalva, N., Tarekeyn, A., Ekong, R., Thomas, M. G., Bekele, E., Bradman, N., & Swallow, D. M. (2015). Diversity of lactase persistence in African milk drinkers. Human Genetics, 134, 917–925. https://doi.org/10.1007/s00439-015-1573-2
Kettunen, J., Silander, K., Saarela, O., Amin, N., Muller, M., Timpson, N., Surakka, I., Ripatti, S., Laitinen, J., Hartikainen, A.-L., Pouta, A., Lahermo, P., Anttila, V., Mannisto, S., Jula, A., Virtamo, J., Salomaa, V., Lehtimaki, T., Raitakari, O., Gieger, C., Wichmann, E. H., Van Duijn, C. M., Smith, G. D., McCarthy, M. I., Jarvelin, M.-R., Perola, M., & Peltonen, L. (2010). European lactase persistence genotype shows evidence of association with increase in body mass index. Human Molecular Genetics, 19, 1129–1136. https://doi.org/10.1093/hmg/ddp561
Keusch, G. T., Troncale, F. J., Thavaramara, B., Prinyanont, P., Anderson, P. R., & Bhamarapravathi, N. (1969). Lactase deficiency in Thailand: Effect of prolonged lactose feeding. The American Journal of Clinical Nutrition, 22, 638–641. https://doi.org/10.1093/ajcn/22.5.638
Krasinski, S., Upchurch, B., Irons, S., June, R., Mishra, K., Grand, R., & Verhave, M. (1997). Rat lactase-phlorizin hydrolase/human growth hormone transgene is expressed on small intestinal villi in transgenic mice. Gastroenterology, 113, 844–855. https://doi.org/10.1016/S0016-5085(97)70179-3
Krasinski, S. D., Van Wering, H. M., Tannemaat, M. R., & Grand, R. J. (2001). Differential activation of intestinal gene promoters: Functional interactions between GATA-5 and HNF-1α. American Journal of Physiology. Gastrointestinal and Liver Physiology, 281, G69–G84. https://doi.org/10.1152/ajpgi.2001.281.1.G69
Kuokkanen, M., Kokkonen, J., Enattah, N. S., Ylisaukko-oja, T., Komu, H., Varilo, T., Peltonen, L., Savilahti, E., & Järvelä, I. (2006). Mutations in the translated region of the lactase gene (LCT) underlie congenital lactase deficiency. American Journal of Human Genetics, 78, 339–344. https://doi.org/10.1086/500053
Labrie, V., Buske, O. J., Oh, E., Jeremian, R., Ptak, C., Gasiūnas, G., Maleckas, A., Petereit, R., Žvirbliene, A., Adamonis, K., Kriukienė, E., Koncevičius, K., Gordevičius, J., Nair, A., Zhang, A., Ebrahimi, S., Oh, G., Šikšnys, V., Kupčinskas, L., Brudno, M., & Petronis, A. (2016). Lactase nonpersistence is directed by DNA-variation-dependent epigenetic aging. Nature Structural & Molecular Biology, 23, 566–573. https://doi.org/10.1038/nsmb.3227
Lacey, S. W., Naim, H. Y., Magness, R. R., Gething, M. J., & Sambrook, J. F. (1994). Expression of lactase-phlorizin hydrolase in sheep is regulated at the RNA level. Biochemical Journal, 302, 929–935. https://doi.org/10.1042/bj3020929
Lamri, A., Poli, A., Emery, N., Bellili, N., Velho, G., Lantieri, O., Balkau, B., Marre, M., & Fumeron, F. (2013). The lactase persistence genotype is associated with body mass index and dairy consumption in the D.E.S.I.R. study. Metabolism, 62, 1323–1329. https://doi.org/10.1016/j.metabol.2013.04.006
Lee, S. Y., Wang, Z., Lin, C.-K., Contag, C. H., Olds, L. C., Cooper, A. D., & Sibley, E. (2002). Regulation of intestine-specific spatiotemporal expression by the rat lactase promoter. The Journal of Biological Chemistry, 277, 13099–13105. https://doi.org/10.1074/jbc.M112152200
Leese, H. J., & Semenza, G. (1973). On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. The Journal of Biological Chemistry, 248, 8170–8173.
Leichter, J. (1973). Effect of dietary lactose on intestinal lactase activity in young rats. The Journal of Nutrition, 103, 392–396. https://doi.org/10.1093/jn/103.3.392
Lember, M., Torniainen, S., Kull, M., Kallikorm, R., Saadla, P., Rajasalu, T., Komu, H., & Järvelä, I. (2006). Lactase non-persistence and milk consumption in Estonia. World Journal of Gastroenterology, 12, 7329–7331. https://doi.org/10.3748/wjg.v12.i45.7329
Lewinsky, R. H., Jensen, T. G. K., Møller, J., Stensballe, A., Olsen, J., & Troelsen, J. T. (2005). T –13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Human Molecular Genetics, 14, 3945–3953. https://doi.org/10.1093/hmg/ddi418
Liebert, A., Jones, B. L., Danielsen, E. T., Olsen, A. K., Swallow, D. M., & Troelsen, J. T. (2016). In vitro functional analyses of infrequent nucleotide variants in the lactase enhancer reveal different molecular routes to increased lactase promoter activity and lactase persistence: Infrequent lactase enhancer variants. Annals of Human Genetics, 80, 307–318. https://doi.org/10.1111/ahg.12167
Liebert, A., López, S., Jones, B. L., Montalva, N., Gerbault, P., Lau, W., Thomas, M. G., Bradman, N., Maniatis, N., & Swallow, D. M. (2017). World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection. Human Genetics, 136, 1445–1453. https://doi.org/10.1007/s00439-017-1847-y
Lloyd, M., Mevissen, G., Fischer, M., Olsen, W., Goodspeed, D., Genini, M., Boll, W., Semenza, G., & Mantei, N. (1992). Regulation of intestinal lactase in adult hypolactasia. The Journal of Clinical Investigation, 89, 524–529. https://doi.org/10.1172/JCI115616
Maiuri, L., Raia, V., Potter, J., Swallow, D., Ho, M. W., Fiocca, R., Finzi, G., Cornaggia, M., Capella, C., Quaroni, A., & Auricchio, S. (1991). Mosaic pattern of lactase expression by villous enterocytes in human adult-type hypolactasia. Gastroenterology, 100, 359–369. https://doi.org/10.1016/0016-5085(91)90203-W
Malek, A. J., Klimentidis, Y. C., Kell, K. P., & Fernández, J. R. (2013). Associations of the lactase persistence allele and lactose intake with body composition among multiethnic children. Genes & Nutrition, 8, 487–494. https://doi.org/10.1007/s12263-013-0335-9
Mantei, N., Villa, M., Enzler, T., Wacker, H., Boll, W., James, P., Hunziker, W., & Semenza, G. (1988). Complete primary structure of human and rabbit lactase-phlorizin hydrolase: Implications for biosynthesis, membrane anchoring and evolution of the enzyme. The EMBO Journal, 7, 2705–2713.
Marangoni, F., Pellegrino, L., Verduci, E., Ghiselli, A., Bernabei, R., Calvani, R., Cetin, I., Giampietro, M., Perticone, F., Piretta, L., Giacco, R., La Vecchia, C., Brandi, M. L., Ballardini, D., Banderali, G., Bellentani, S., Canzone, G., Cricelli, C., Faggiano, P., Ferrara, N., Flachi, E., Gonnelli, S., Macca, C., Magni, P., Marelli, G., Marrocco, W., Miniello, V. L., Origo, C., Pietrantonio, F., Silvestri, P., Stella, R., Strazzullo, P., Troiano, E., & Poli, A. (2019). Cow’s milk consumption and health: A health professional’s guide. Journal of the American College of Nutrition, 38, 197–208. https://doi.org/10.1080/07315724.2018.1491016
Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., Sirak, K., Gamba, C., Jones, E. R., Llamas, B., Dryomov, S., Pickrell, J., Arsuaga, J. L., de Castro, J. M. B., Carbonell, E., Gerritsen, F., Khokhlov, A., Kuznetsov, P., Lozano, M., Meller, H., Mochalov, O., Moiseyev, V., Guerra, M. A. R., Roodenberg, J., Vergès, J. M., Krause, J., Cooper, A., Alt, K. W., Brown, D., Anthony, D., Lalueza-Fox, C., Haak, W., Pinhasi, R., & Reich, D. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528, 499–503. https://doi.org/10.1038/nature16152
Mathieson, I., Alpaslan-Roodenberg, S., Posth, C., Szécsényi-Nagy, A., Rohland, N., Mallick, S., Olalde, I., Broomandkhoshbacht, N., Candilio, F., Cheronet, O., Fernandes, D., Ferry, M., Gamarra, B., Fortes, G. G., Haak, W., Harney, E., Jones, E., Keating, D., Krause-Kyora, B., Kucukkalipci, I., Michel, M., Mittnik, A., Nägele, K., Novak, M., Oppenheimer, J., Patterson, N., Pfrengle, S., Sirak, K., Stewardson, K., Vai, S., Alexandrov, S., Alt, K. W., Andreescu, R., Antonović, D., Ash, A., Atanassova, N., Bacvarov, K., Gusztáv, M. B., Bocherens, H., Bolus, M., Boroneanţ, A., Boyadzhiev, Y., Budnik, A., Burmaz, J., Chohadzhiev, S., Conard, N. J., Cottiaux, R., Čuka, M., Cupillard, C., Drucker, D. G., Elenski, N., Francken, M., Galabova, B., Ganetsovski, G., Gély, B., Hajdu, T., Handzhyiska, V., Harvati, K., Higham, T., Iliev, S., Janković, I., Karavanić, I., Kennett, D. J., Komšo, D., Kozak, A., Labuda, D., Lari, M., Lazar, C., Leppek, M., Leshtakov, K., Vetro, D. L., Los, D., Lozanov, I., Malina, M., Martini, F., McSweeney, K., Meller, H., Menđušić, M., Mirea, P., Moiseyev, V., Petrova, V., Price, T. D., Simalcsik, A., Sineo, L., Šlaus, M., Slavchev, V., Stanev, P., Starović, A., Szeniczey, T., Talamo, S., Teschler-Nicola, M., Thevenet, C., Valchev, I., Valentin, F., Vasilyev, S., Veljanovska, F., Venelinova, S., Veselovskaya, E., Viola, B., Virag, C., Zaninović, J., Zäuner, S., Stockhammer, P. W., Catalano, G., Krauß, R., Caramelli, D., Zariņa, G., Gaydarska, B., Lillie, M., Nikitin, A. G., Potekhina, I., Papathanasiou, A., Borić, D., Bonsall, C., Krause, J., Pinhasi, R., & Reich, D. (2018). The genomic history of southeastern Europe. Nature, 555, 197–203. https://doi.org/10.1038/nature25778
Matía-Martín, P., Torrego-Ellacuría, M., Larrad-Sainz, A., Fernández-Pérez, C., Cuesta-Triana, F., & Rubio-Herrera, M. Á. (2019). Effects of milk and dairy products on the prevention of osteoporosis and osteoporotic fractures in Europeans and non-Hispanic whites from North America: A systematic review and updated meta-analysis. Advances in Nutrition, 10, S120–S143. https://doi.org/10.1093/advances/nmy097
Matthews, S. B. (2005). Systemic lactose intolerance: A new perspective on an old problem. Postgraduate Medical Journal, 81, 167–173. https://doi.org/10.1136/pgmj.2004.025551
McCracken, R. D. (1971). Lactase deficiency: An example of dietary evolution. Current Anthropology, 12, 479–517.
Meloni, T., Colombo, C., Ogana, A., Mannazzu, M. C., & Meloni, G. F. (1996). Lactose absorption in patients with glucose 6-phosphate dehydrogenase deficiency with and without favism. Gut, 39, 210–213. https://doi.org/10.1136/gut.39.2.210
Meloni, T., Colombo, C., Ruggiu, G., Dessena, M., & Meloni, G. F. (1998). Primary lactase deficiency and past malarial endemicity in Sardinia. Italian Journal of Gastroenterology and Hepatology, 30, 490–493.
Meloni, G. F., Colombo, C., La Vecchia, C., Pacifico, A., Tomasi, P., Ogana, A., Marinaro, A. M., & Meloni, T. (2001). High prevalence of lactose absorbers in northern Sardinian patients with type 1 and type 2 diabetes mellitus. The American Journal of Clinical Nutrition, 73, 582–585. https://doi.org/10.1093/ajcn/73.3.582
Metneki, J., Czeizel, A., Flatz, S. D., & Flatz, G. (1984). A study of lactose absorption capacity in twins. Human Genetics, 67, 296–300. https://doi.org/10.1007/BF00291356
Misselwitz, B., Butter, M., Verbeke, K., & Fox, M. R. (2019). Update on lactose malabsorption and intolerance: Pathogenesis, diagnosis and clinical management. Gut, 68, 2080–2091. https://doi.org/10.1136/gutjnl-2019-318404
Mitchelmore, C., Troelsen, J. T., Spodsberg, N., Sjöström, H., & Norén, O. (2000). Interaction between the homeodomain proteins Cdx2 and HNF1-alpha mediates expression of the lactase-phlorizin hydrolase gene. Biochemical Journal, 346(Pt 2), 529–535.
Montalva, N., Adhikari, K., Liebert, A., Mendoza-Revilla, J., Flores, S. V., Mace, R., & Swallow, D. M. (2019). Adaptation to milking agropastoralism in Chilean goat herders and nutritional benefit of lactase persistence. Annals of Human Genetics, 83, 11–22. https://doi.org/10.1111/ahg.12277
Mulcare, C. A., Weale, M. E., Jones, A. L., Connell, B., Zeitlyn, D., Tarekegn, A., Swallow, D. M., Bradman, N., & Thomas, M. G. (2004). The T allele of a single-nucleotide polymorphism 13.9 kb upstream of the lactase gene (LCT) (C–13.9kbT) does not predict or cause the lactasepersistence phenotype in Africans. American Journal of Human Genetics, 74, 1102–1110. https://doi.org/10.1086/421050
Myles, S., Bouzekri, N., Haverfield, E., Cherkaoui, M., Dugoujon, J.-M., & Ward, R. (2005). Genetic evidence in support of a shared Eurasian-North African dairying origin. Human Genetics, 117, 34–42. https://doi.org/10.1007/s00439-005-1266-3
Naim, H. Y., & Naim, H. (1996). Dimerization of lactase-phlorizin hydrolase occurs in the endoplasmic reticulum, involves the putative membrane spanning domain and is required for an efficient transport of the enzyme to the cell surface. European Journal of Cell Biology, 70, 198–208.
Naim, H. Y., Sterchi, E. E., & Lentze, M. J. (1987). Biosynthesis and maturation of lactase-phlorizin hydrolase in the human small intestinal epithelial cells. Biochemical Journal, 241, 427–434. https://doi.org/10.1042/bj2410427
Nilsson, T. K., & Olsson, L. A. (2008). Simultaneous genotyping of the three lactose tolerancelinked polymorphisms LCT –13907C>G, LCT –13910C>T and LCT –13915T>G with Pyrosequencing™ technology. Clinical Chemistry and Laboratory Medicine, 46, 80–84. https://doi.org/10.1515/CCLM.2008.015
Obermayer-Pietsch, B. M., Bonelli, C. M., Walter, D. E., Kuhn, R. J., Fahrleitner-Pammer, A., Berghold, A., Goessler, W., Stepan, V., Dobnig, H., Leb, G., & Renner, W. (2003). Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. Journal of Bone and Mineral Research, 19, 42–47. https://doi.org/10.1359/jbmr.0301207
Oesterreicher, T. J., & Henning, S. J. (2004). Rapid induction of GATA transcription factors in developing mouse intestine following glucocorticoid administration. American Journal of Physiology. Gastrointestinal and Liver Physiology, 286, G947–G953. https://doi.org/10.1152/ajpgi.00470.2003
Olds, L. C., & Sibley, E. (2003). Lactase persistence DNA variant enhances lactase promoter activity in vitro: Functional role as a cis regulatory element. Human Molecular Genetics, 12, 2333–2340. https://doi.org/10.1093/hmg/ddg244
Olds, L. C., Ahn, J. K., & Sibley, E. (2011). –13915*G DNA polymorphism associated with lactase persistence in Africa interacts with Oct-1. Human Genetics, 129, 111–113. https://doi.org/10.1007/s00439-010-0898-0
Panzer, P., Preuss, U., Joberty, G., & Naim, H. Y. (1998). Protein domains implicated in intracellular transport and sorting of lactase-phlorizin hydrolase. The Journal of Biological Chemistry, 273, 13861–13869. https://doi.org/10.1074/jbc.273.22.13861
Pautz, W., & Vogel, J. (1895). Uber die einwirkung der magen-und darmschleimhaut auf einige biosen und auf raffinose. Zeitschrift für Biologie, 32, 304–307.
Peuhkuri, K., Vapaatalo, H., Korpela, R., & Teuri, U. (2000). Lactose intolerance—A confusing clinical diagnosis. The American Journal of Clinical Nutrition, 71, 600–602. https://doi.org/10.1093/ajcn/71.2.600
Pié, S., Lallès, J. P., Blazy, F., Laffitte, J., Sève, B., & Oswald, I. P. (2004). Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. The Journal of Nutrition, 134, 641–647. https://doi.org/10.1093/jn/134.3.641
Plimmer, R. H. A. (1906). On the presence of lactase in the intestines of animals and on the adaptation of the intestine to lactose. The Journal of Physiology, 35, 20–31. https://doi.org/10.1113/jphysiol.1906.sp001178
Pohl, D., Savarino, E., Hersberger, M., Behlis, Z., Stutz, B., Goetze, O., Eckardstein, A. V., Fried, M., & Tutuian, R. (2010). Excellent agreement between genetic and hydrogen breath tests for lactase deficiency and the role of extended symptom assessment. The British Journal of Nutrition, 104, 900–907. https://doi.org/10.1017/S0007114510001297
Poulter, M., Hollox, E., Harvey, C. B., Mulcare, C., Peuhkuri, K., Kajander, K., Sarner, M., Korpela, R., & Swallow, D. M. (2003). The causal element for the lactase persistence/non-persistence polymorphism is located in a 1 Mb region of linkage disequilibrium in Europeans. Annals of Human Genetics, 67, 298–311. https://doi.org/10.1046/j.1469-1809.2003.00048.x
Ranciaro, A., Campbell, M. C., Hirbo, J. B., Ko, W.-Y., Froment, A., Anagnostou, P., Kotze, M. J., Ibrahim, M., Nyambo, T., Omar, S. A., & Tishkoff, S. A. (2014). Genetic origins of lactase persistence and the spread of pastoralism in Africa. American Journal of Human Genetics, 94, 496–510. https://doi.org/10.1016/j.ajhg.2014.02.009
Rasinpera, H. (2004). A genetic test which can be used to diagnose adult-type hypolactasia in children. Gut, 53, 1571–1576. https://doi.org/10.1136/gut.2004.040048
Rezaie, A., Buresi, M., Lembo, A., Lin, H., McCallum, R., Rao, S., Schmulson, M., Valdovinos, M., Zakko, S., & Pimentel, M. (2017). Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American consensus. The American Journal of Gastroenterology, 112, 775–784. https://doi.org/10.1038/ajg.2017.46
Rossi, M., Maiuri, L., Fusco, M., Salvati, V., Fuccio, A., Auricchio, S., Mantei, N., Zecca, L., Gloor, S., & Semenza, G. (1997). Lactase persistence versus decline in human adults: Multifactorial events are involved in down-regulation after weaning. Gastroenterology, 112, 1506–1514. https://doi.org/10.1016/S0016-5085(97)70031-3
Sabeti, P. C. (2006). Positive natural selection in the human lineage. Science, 312, 1614–1620. https://doi.org/10.1126/science.1124309
Sahi, T. (1974). The inheritance of selective adult-type lactose malabsorption. Scandinavian Journal of Gastroenterology. Supplement, 30, 1–73.
Saltzman, J. R., Russell, R. M., Golner, B., Barakat, S., Dallal, G. E., & Goldin, B. R. (1999). A randomized trial of Lactobacillus acidophilus BG2FO4 to treat lactose intolerance. The American Journal of Clinical Nutrition, 69, 140–146. https://doi.org/10.1093/ajcn/69.1.140
Satija, A., Yu, E., Willett, W. C., & Hu, F. B. (2015). Understanding nutritional epidemiology and its role in policy. Advances in Nutrition, 6, 5–18. https://doi.org/10.3945/an.114.007492
Savaiano, D. A., Boushey, C. J., & McCabe, G. P. (2006). Lactose intolerance symptoms assessed by meta-analysis: A grain of truth that leads to exaggeration. The Journal of Nutrition, 136, 1107–1113. https://doi.org/10.1093/jn/136.4.1107
Sebastio, G., Villa, M., Sartorio, R., Guzzetta, V., Poggi, V., Auricchio, S., Boll, W., Mantei, N., & Semenza, G. (1989). Control of lactase in human adult-type hypolactasia and in weaning rabbits and rats. American Journal of Human Genetics, 45, 489–497.
Ségurel, L., & Bon, C. (2017). On the evolution of lactase persistence in humans. Annual Review of Genomics and Human Genetics, 18, 297–319. https://doi.org/10.1146/annurev-genom-091416-035340
Semenza, G., Auricchio, S., & Mantei, N. (1999). Small-intestinal disaccharidases. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic and molecular bases of inherited disease (Vol. 1, 8th ed., pp. 1623–1650). New York: McGraw-Hill.
Simoons, F. J. (1970). Primary adult lactose intolerance and the milking habit: A problem in biologic and cultural interrelations: II. A culture historical hypothesis. The American Journal of Digestive Diseases, 15, 695–710. https://doi.org/10.1007/BF02235991
Skovbjerg, H., Sjostrom, H., & Noren, O. (1981). Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. European Journal of Biochemistry, 114, 653–661. https://doi.org/10.1111/j.1432-1033.1981.tb05193.x
Snook, C. R., Mahmoud, J. N., & Chang, W. P. (1976). Lactose tolerance in adult Jordanian Arabs. Tropical and Geographical Medicine, 28, 333–335.
Spodsberg, N., Troelsen, J. T., Carlsson, P., Enerbäck, S., Sjöström, H., & Norén, O. (1999). Transcriptional regulation of pig lactase-phlorizin hydrolase: Involvement of HNF-1 and FREACs. Gastroenterology, 116, 842–854. https://doi.org/10.1016/S0016-5085(99)70067-3
Sterchi, E. E., Mills, P. R., Fransen, J. A., Hauri, H. P., Lentze, M. J., Naim, H. Y., Ginsel, L., & Bond, J. (1990). Biogenesis of intestinal lactase-phlorizin hydrolase in adults with lactose intolerance. Evidence for reduced biosynthesis and slowed-down maturation in enterocytes. The Journal of Clinical Investigation, 86, 1329–1337. https://doi.org/10.1172/JCI114842
Strand, H., Sørensen, L. K., & Ingebretsen, O. C. (2014). Lactase persistence genotyping: Rapid detection of seven sequence variants in a single tube with melting curve analyses. Clinical Chemistry and Laboratory Medicine, 52, 1277–1282. https://doi.org/10.1515/cclm-2014-0123
Sverrisdóttir, O. Ó., Timpson, A., Toombs, J., Lecoeur, C., Froguel, P., Carretero, J. M., Arsuaga Ferreras, J. L., Götherström, A., & Thomas, M. G. (2014). Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe. Molecular Biology and Evolution, 31, 975–983. https://doi.org/10.1093/molbev/msu049
Swallow, D. M., & Troelsen, J. T. (2016). Escape from epigenetic silencing of lactase expression is triggered by a single-nucleotide change. Nature Structural & Molecular Biology, 23, 505–507. https://doi.org/10.1038/nsmb.3238
Szilagyi, A., & Ishayek, N. (2018). Lactose intolerance, dairy avoidance, and treatment options. Nutrients, 10, 1994. https://doi.org/10.3390/nu10121994
Tag, C. G., Oberkanins, C., Kriegshäuser, G., Ingram, C. J. E., Swallow, D. M., Gressner, A. M., Ledochowski, M., & Weiskirchen, R. (2008). Evaluation of a novel reverse-hybridization StripAssay for typing DNA variants useful in diagnosis of adult-type hypolactasia. Clinica Chimica Acta, 392, 58–62. https://doi.org/10.1016/j.cca.2008.03.006
Thacher, T. D., Fischer, P. R., Pettifor, J. M., Lawson, J. O., Isichei, C. O., Reading, J. C., & Chan, G. M. (1999). A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. The New England Journal of Medicine, 341, 563–568. https://doi.org/10.1056/NEJM199908193410803
Thorning, T. K., Raben, A., Tholstrup, T., Soedamah-Muthu, S. S., Givens, I., & Astrup, A. (2016). Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food & Nutrition Research, 60, 32527. https://doi.org/10.3402/fnr.v60.32527
Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., Powell, K., Mortensen, H. M., Hirbo, J. B., Osman, M., Ibrahim, M., Omar, S. A., Lema, G., Nyambo, T. B., Ghori, J., Bumpstead, S., Pritchard, J. K., Wray, G. A., & Deloukas, P. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39, 31–40. https://doi.org/10.1038/ng1946
Troelsen, J. T. (2005). Adult-type hypolactasia and regulation of lactase expression. Biochimica et Biophysica Acta, 1723, 19–32. https://doi.org/10.1016/j.bbagen.2005.02.003
Troelsen, J. T., Olsen, J., Norén, O., & Sjöström, H. (1992). A novel intestinal trans-factor (NF-LPH1) interacts with the lactase-phlorizin hydrolase promoter and co-varies with the enzymatic activity. The Journal of Biological Chemistry, 267, 20407–20411.
Troelsen, J. T., Mehlum, A., Olsen, J., Spodsberg, N., Hansen, G. H., Prydz, H., Norén, O., & Sjöström, H. (1994). 1 kb of the lactase-phlorizin hydrolase promoter directs post-weaning decline and small intestinal-specific expression in transgenic mice. FEBS Letters, 342, 291–296. https://doi.org/10.1016/0014-5793(94)80519-9
Troelsen, J. T., Mitchelmore, C., Spodsberg, N., Jensen, A. M., Norén, O., & Sjöström, H. (1997). Regulation of lactase–phlorizin hydrolase gene expression by the caudal-related homoeodomain protein Cdx-2. Biochemical Journal, 322, 833–838. https://doi.org/10.1042/bj3220833
Troelsen, J. T., Olsen, J., Møller, J., & Sjöström, H. (2003). An upstream polymorphism associated with lactase persistence has increased enhancer activity. Gastroenterology, 125, 1686–1694. https://doi.org/10.1053/j.gastro.2003.09.031
van den Heuvel, E. G. H. M., & Steijns, J. M. J. M. (2018). Dairy products and bone health: How strong is the scientific evidence? Nutrition Research Reviews, 31, 164–178. https://doi.org/10.1017/S095442241800001X
Vesa, T. H., Marteau, P., & Korpela, R. (2000). Lactose intolerance. Journal of the American College of Nutrition, 19, 165S–175S. https://doi.org/10.1080/07315724.2000.10718086
Vigne, J. D. (2008). Zooarchaeological aspects of the Neolithic diet transition in the Near East and Europe, and their putative relationships with the Neolithic Demographic transition. In J. P. Bocquet-Appel & O. Bar-Yosef (Eds.), The Neolithic demographic transition and its consequences (pp. 179–205). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8539-0_8
Villako, K., & Maaroos, H. (1994). Clinical picture of hypolactasia and lactose intolerance. Scandinavian Journal of Gastroenterology, 29, 36–54. https://doi.org/10.3109/00365529409091743
Wacker, H., Keller, P., Falchetto, R., Legler, G., & Semenza, G. (1992). Location of the two catalytic sites in intestinal lactase-phlorizin hydrolase. Comparison with sucrase-isomaltase and with other glycosidases, the membrane anchor of lactase-phlorizin hydrolase. The Journal of Biological Chemistry, 267, 18744–18752.
Walsh, J., Meyer, R., Shah, N., Quekett, J., & Fox, A. T. (2016). Differentiating milk allergy (IgE and non-IgE mediated) from lactose intolerance: Understanding the underlying mechanisms and presentations. The British Journal of General Practice, 66, e609–e611. https://doi.org/10.3399/bjgp16X686521
Wang, Y., Harvey, C. B., Pratt, W. S., Sams, V., Sarner, M., Rossi, M., Auricchio, S., & Swallow, D. M. (1995). The lactase persistence/non-persistence polymorphism is controlled by a cis-acting element. Human Molecular Genetics, 4, 657–662. https://doi.org/10.1093/hmg/4.4.657
Wang, Z., Maravelias, C., & Sibley, E. (2006). Lactase gene promoter fragments mediate differential spatial and temporal expression patterns in transgenic mice. DNA and Cell Biology, 25, 215–222. https://doi.org/10.1089/dna.2006.25.215
Wang, J., Thingholm, L. B., Skiecevičienė, J., Rausch, P., Kummen, M., Hov, J. R., Degenhardt, F., Heinsen, F.-A., Rühlemann, M. C., Szymczak, S., Holm, K., Esko, T., Sun, J., Pricop-Jeckstadt, M., Al-Dury, S., Bohov, P., Bethune, J., Sommer, F., Ellinghaus, D., Berge, R. K., Hübenthal, M., Koch, M., Schwarz, K., Rimbach, G., Hübbe, P., Pan, W.-H., Sheibani-Tezerji, R., Häsler, R., Rosenstiel, P., D’Amato, M., Cloppenborg-Schmidt, K., Künzel, S., Laudes, M., Marschall, H.-U., Lieb, W., Nöthlings, U., Karlsen, T. H., Baines, J. F., & Franke, A. (2016). Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nature Genetics, 48, 1396–1406. https://doi.org/10.1038/ng.3695
Wilder-Smith, C. H., Olesen, S. S., Materna, A., & Drewes, A. M. (2018). Fermentable sugar ingestion, gas production, and gastrointestinal and central nervous system symptoms in patients with functional disorders. Gastroenterology, 155, 1034–1044.e6. https://doi.org/10.1053/j.gastro.2018.07.013
Wiley, A. S. (2018). The evolution of lactase persistence: Milk consumption, insulin-like growth factor I, and human life-history parameters. The Quarterly Review of Biology, 93, 319–345. https://doi.org/10.1086/700768
Witte, J., Lloyd, M., Lorenzsonn, V., Korsmo, H., & Olsen, W. (1990). The biosynthetic basis of adult lactase deficiency. The Journal of Clinical Investigation, 86, 1338–1342. https://doi.org/10.1172/JCI114843
Wright, E. M., Hirayama, B. A., & Loo, D. F. (2007). Active sugar transport in health and disease. Journal of Internal Medicine, 261, 32–43. https://doi.org/10.1111/j.1365-2796.2006.01746.x
Wu, Y., Li, Y., Cui, Y., Zhou, Y., Qian, Q., & Hong, Y. (2017). Association of lactase 13910 C/T polymorphism with bone mineral density and fracture risk: A meta-analysis. Journal of Genetics, 96, 993–1003. https://doi.org/10.1007/s12041-017-0866-8
Zheng, X., Chu, H., Cong, Y., Deng, Y., Long, Y., Zhu, Y., Pohl, D., Fried, M., Dai, N., & Fox, M. (2015). Self-reported lactose intolerance in clinic patients with functional gastrointestinal symptoms: Prevalence, risk factors, and impact on food choices. Neurogastroenterology and Motility, 27, 1138–1146. https://doi.org/10.1111/nmo.12602
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ingram, C.J.E., Montalva, N., Swallow, D.M. (2022). Lactose Malabsorption. In: McSweeney, P.L.H., O'Mahony, J.A., Kelly, A.L. (eds) Advanced Dairy Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-92585-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-92585-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92584-0
Online ISBN: 978-3-030-92585-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)