Skip to main content

Significance of Lactose in Dairy Products

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Lactose represents a significant proportion of the solids content of a number of dairy products, and so it is not surprising that the properties of lactose can play a significant role in determining the properties of such products. For example, in milk powder, particularly skimmed milk powder, controlling the crystallisation state of lactose can be key to ensuring storage stability and optimising later rehydration properties, while problems such as grittiness or sandiness in concentrated systems like ice cream and sweetened condensed milk can result from the uncontrolled crystallisation of α-lactose. In addition, the significant proportion of lactose-intolerant consumers in many regions of the world has driven a demand for lactose-reduced or -free products, and a range of processes have been developed to meet this demand. In this chapter, key dairy product-related aspects of the properties of lactose, in particular the commodities mentioned here, will be reviewed and discussed in a number of short sub-chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References for Section 3.1

  • Abbasi, S., & Saeedabadian, A. (2015). Influences of lactose hydrolysis of milk and sugar reduction on some physical properties of ice cream. Journal of Food Science and Technology, 52(1), 367–374.

    Article  CAS  Google Scholar 

  • Alvarez, V. B., Wolters, C. L., Vodovotz, Y., & Ji, T. (2005). Physical properties of ice cream containing milk protein concentrates. Journal of Dairy Science, 88, 862–871.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, R. L. (1984). Plotting freezing curves for frozen desserts. Dairy Record, 85(7), 86–87.

    Google Scholar 

  • Bradley, R. L., & Smith, K. E. (1983). Finding the freezing point of frozen desserts. Dairy Record, 84(6), 114–115.

    Google Scholar 

  • Clarke, C. (2012). The science of ice cream (2nd ed.). London: RSC Publishing.

    Google Scholar 

  • De Cindio, B., Correra, S., & Hoff, V. (1995). Low temperature sugar-water equilibrium curve by a rapid calorimetric method. Journal of Food Engineering, 24, 405–415.

    Article  Google Scholar 

  • Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019a). Lactose-free dairy products: Market developments, production, nutrition and health benefits. Nutrients, 11(551), 1–14.

    Google Scholar 

  • El-Neshawy, A. A., Abdel Baky, A. A., Rabie, A. M., & Metwally, S. A. (1988). Organoleptic and physical properties of ice cream made from hydrolysed lactose reconstituted milk. Food Chemistry, 27, 83–93.

    Article  CAS  Google Scholar 

  • Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., & O’Mahony, J. A. (2015). Dairy chemistry and biochemistry (2nd ed.). New York: Springer.

    Google Scholar 

  • Goff, H. D. (2016). Milk proteins in ice cream. In P. L. H. McSweeney & J. A. O’Mahony (Eds.), Advanced dairy chemistry—1B—Proteins. Applied aspects (4th ed., pp. 329–345). New York: Springer.

    Google Scholar 

  • Goff, H. D. (2020). Role of milk fat in dairy products: Ice cream. In P. L. H. McSweeney, P. F. Fox, & J. A. O’Mahony (Eds.), Advanced dairy chemistry-2. Lipids (4th ed.). New York: Springer Academic.

    Google Scholar 

  • Goff, H. D., & Hartel, R. W. (2013). Ice cream (7th ed.). New York: Springer.

    Google Scholar 

  • Guy, E. J. (1980). Partial replacement of nonfat milk solids and cane sugar in ice cream with lactose hydrolyzed sweet whey solids. Journal of Food Science, 45, 129–133.

    Article  CAS  Google Scholar 

  • Hartel, R. W. (2001). Crystallization in foods. Gaithersburg, MD: Aspen.

    Google Scholar 

  • Horner, T. W., Dunn, M. L., Eggett, D. L., & Ogden, L. V. (2011). Beta-galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of Dairy Science, 94, 3242–3249.

    Article  CAS  PubMed  Google Scholar 

  • Huse, P. A., Towler, C., & Harper, W. J. (1984). Substitution of nonfat solids in ice cream with whey protein concentrate and hydrolysed lactose. New Zealand Journal of Dairy Science and Technology, 19, 225–261.

    Google Scholar 

  • Jaskulka, F. J., Smith, D. E., & Larntz, K. (1993). Comparison of the predictive ability of ice cream freezing point depression equations. Milchwissenschaft, 48, 671–675.

    CAS  Google Scholar 

  • Jaskulka, F. J., Smith, D. E., & Larntz, K. (1995). Development of an empirical model to predict freezing point of ice cream mix. Milchwissenschaft, 50, 26–30.

    CAS  Google Scholar 

  • Leighton, A. (1927). On the calculation of the freezing point of ice cream mixes and of quantities of ice separated during the freezing process. Journal of Dairy Science, 10, 300–308.

    Article  CAS  Google Scholar 

  • Leighton, A. (1944). Use of whey solids in ice cream. Ice Cream Reviews, 27(6), 18–20.

    Google Scholar 

  • Lindamood, J. B., Grooms, D. J., & Hansen, P. M. T. (1989). Effect of hydrolysis of lactose and sucrose on firmness of ice cream. Food Hydrocolloids, 3, 379–388.

    Article  CAS  Google Scholar 

  • Livney, Y. D., Donhowe, D. P., & Hartel, R. W. (1995). Influence of temperature on crystallization of lactose in ice-cream. International Journal of Food Science and Technology, 30, 311–320.

    Article  CAS  Google Scholar 

  • Livney, T., Verespej, E., & Goff, H. D. (2003). On the calculation of ice cream freezing curves. Milchwissenschaft, 58, 640–642.

    Google Scholar 

  • Mahmood, W. A., & Mahmood, K. T. (2017). Application of enzymatically hydrolyzed-lactose milk and whey in some dairy products. Mesopotamia Journal of Agriculture, 45(1), 329–340.

    Article  Google Scholar 

  • Matak, K. E., Wilson, J. H., Duncan, S. E., Wilson, E. J., Hacknay, C. R., & Sumner, S. S. (2003). The influence of lactose hydrolysis on the strength and sensory characteristics of vanilla ice cream. Transactions of ASAE, 46, 1589–1593.

    Article  CAS  Google Scholar 

  • Nickerson, T. A. (1954). Lactose crystallization in ice cream: I. Control of size by seeding. Journal of Dairy Science, 37, 1099–1105.

    Article  Google Scholar 

  • Nickerson, T. A. (1956). Lactose crystallization in ice cream: II. Factors affecting rate and quality. Journal of Dairy Science, 39, 1342–1350.

    Article  CAS  Google Scholar 

  • Nickerson, T. A. (1962). Lactose crystallization in ice cream: III. Factors responsible for reduced incidence of sandiness. Journal of Dairy Science, 45, 354–359.

    Article  CAS  Google Scholar 

  • Nickerson, T. A., & Moore, E. E. (1972). Solubility interrelations of lactose and sucrose. Journal of Food Science, 37, 60–61.

    Article  Google Scholar 

  • Smith, K. E., & Bradley, R. L. (1983). Effects of freezing point of carbohydrates commonly used in frozen desserts. Journal of Dairy Science, 66, 2464–2467.

    Article  CAS  Google Scholar 

  • Sommer, H. H. (1944). The theory and practice of ice cream making (4th ed.). Milwaukee, WI: Olsen Publishing.

    Google Scholar 

  • Tharp, B. W., & Young, L. S. (2013). One ice cream. Lancaster, PA: Destech Publications Inc.

    Google Scholar 

  • Tsuchiya, A. C., da Graca Monteiro, A., da Silva, D., Brandt, D. L., Kalschne, D. A., & Drunkler, E. C. (2017). Lactose-reduced ice cream enriched with whey powder. Semina: Ciencias Agrarias, 38(2), 749–758.

    CAS  Google Scholar 

  • Whelan, A. P., Kerry, J. P., & Goff, H. D. (2008). Physicochemical and sensory optimization of a low glycemic index ice cream formulation. International Journal of Food Science and Technology, 43, 1520–1527.

    Article  CAS  Google Scholar 

  • Zoller, H. F., & Williams, O. E. (1921). Sandy crystals in ice cream: Their separation and identification. Journal of Agricultural Research, 21, 791–795.

    CAS  Google Scholar 

References for Section 3.2

  • Alves, G., Xavier, P., Limoeiro, R., & Perrone, D. (2020). Contribution of melanoidins from heat-processed foods to the phenolic compound intake and antioxidant capacity of the Brazilian diet. Journal of Food Science and Technology, 57, 3119–3131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ares, G., Gimenez, A., & Gambaro, A. (2006). Preference mapping of texture of Dulce de Leche. Journal of Sensory Studies, 21, 553–571.

    Article  Google Scholar 

  • Codigo Alimentario Argentino. (2020). Retrieved from www.argentina.gob.ar/sites/default/files/capitulo_viii_lacteos_actualiz_2020-01.pdf

  • Cortes Yanez, D., Gagneten, M., Leiva, G., & Malec, L. (2018). Antioxidant activity developed at the different stages of Maillard reaction with milk proteins. Food Science and Technology, 89, 344–349.

    CAS  Google Scholar 

  • Da Silva, L., Junior, J., Leite, M., Fontes, E., & Coimbra, J. (2020). Comparative appraisal of HPLC, Chloramine-T and Lane–Eynon methods for quantification of carbohydrates in concentrated dairy products. International Journal of Dairy Technology, 73, 795. https://doi.org/10.1111/1471-0307.12710

    Article  CAS  Google Scholar 

  • Echavarria, A. P., Pagan, J., & Ibarz, A. (2012). Melanoidins formed by Maillard reaction in food and their biological activity. Food Engineering Reviews, 4, 203–223.

    Article  CAS  Google Scholar 

  • Ferramondo, A., Chirife, J., Parada, J. L., & Vido, S. (1984). Chemical and microbiological studies on Dulce de Leche: A typical Argentine confectionery product. Journal of Food Science, 49, 821–823.

    Article  Google Scholar 

  • Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry. London: Blackie Academic & Professional.

    Google Scholar 

  • Francisquini, J. A., Neves, L., Torres, J., Carvalho, A. F., Perrone, I. T., & de Silva, P. H. F. (2018). Physico-chemical and compositional analyses and 5-hydroxymethylfurfural concentration as indicators of thermal treatment intensity in experimental Dulce de Lleche. The Journal of Dairy Research, 85(4), 476–481.

    Article  CAS  PubMed  Google Scholar 

  • Francisquini, J. A., Pereira, J. P. F., Pinto, M. S., Carvalho, A. F., Perrone, I. T., & Silva, P. H. F. (2019). Evolution of soluble solid content and evaporation rate curves during the manufacture of Dulce de Leche. Food Science and Technology, 39, 78–82.

    Article  Google Scholar 

  • Ganzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 18(7), 685–694.

    Article  Google Scholar 

  • Garitta, L., Hough, G., & Sanchez, R. (2004). Sensory shelf life of Dulce de Leche. Journal of Dairy Science, 87, 1601–1607.

    Article  CAS  PubMed  Google Scholar 

  • Gaze, L. V., Costa, M. P., Monteiro, M. L. G., Lavorato, J. A. A., Conte Junior, C. A., Raices, R. S. L., Cruz, A. G., & Freitas, M. Q. (2015). Dulce de Leche, a typical product of Latin America: Characterization by physicochemical, optical and instrumental methods. Food Chemistry, 169, 471–477.

    Article  CAS  PubMed  Google Scholar 

  • Gimenez, A., Ares, G., & Gambaro, A. (2008). Consumer reaction to changes in sensory profile of dulce de leche due to lactose hydrolysis. International Dairy Journal, 18, 951–955.

    Article  CAS  Google Scholar 

  • Haase, G., & Nickerson, T. A. (1966a). Kinetic reactions of alpha and beta lactose. I. Mutarotation. Journal of Dairy Science, 49, 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Haase, G., & Nickerson, T. A. (1966b). Kinetic reactions of alpha and beta lactose. II. Crystallisation. Journal of Dairy Science, 49, 757–761.

    Article  CAS  PubMed  Google Scholar 

  • Holsinger, V. H. (1988). Lactose. In N. P. R. Wong (Ed.), Fundamentals of dairy chemistry (3rd ed., pp. 279–342). New York: Van Nostrand Reinhold Co.

    Google Scholar 

  • Holsinger, V. H. (1997). Physical and chemical properties of lactose. In P. F. Fox (Ed.), Advanced dairy chemistry (Vol. 3, 2nd ed., pp. 1–31). London: Chapman & Hall.

    Google Scholar 

  • Hynes, E., & Zalazar, C. (2009). Lactose in Dulce de Leche. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry. Lactose, water, salts and minor constituents (Vol. 3, pp. 58–67). New York: Springer.

    Google Scholar 

  • Kurlat, J. (2010). Productos lácteos. Elaboración de Dulce de Leche. Cuadernillo para unidades de producción (2nd ed., pp. 1–24). Buenos Aires: Instituto Nacional de Tecnologia Industrial. ISBN 978-950-532-146-9.

    Google Scholar 

  • Malec, L. S., Llosa, R. A., Naranjo, G. B., & Vigo, M. S. (2005). Loss of availably of lysine during processing of different Dulce de Leche formulations. International Journal of Dairy Technology, 58, 164–168.

    Article  CAS  Google Scholar 

  • Morales, F. J., & van Boekel, M. A. J. S. (1997). A study on advanced Maillard reaction in heated casein/sugar solutions: Fluorescence accumulation. International Dairy Journal, 7, 675–683.

    Article  CAS  Google Scholar 

  • Morales, F. J., & van Boekel, M. A. J. S. (1998). A study on advanced Maillard reaction in heated casein/sugar solutions: Colour formation. International Dairy Journal, 8, 907–915.

    Article  CAS  Google Scholar 

  • Navarro, A. S., Ferrero, C., & Zaritzky, N. (1999). Rheological characterization of Dulce de Leche by dynamic and steady shear measurements. Journal of Texture Studies, 30, 43–58.

    Article  Google Scholar 

  • Newton, A. E., Fairbanks, A. J., Golding, M., Andrewes, P., & Gerrard, J. A. (2012). The role of the Maillard reaction in the formation of flavour compounds in dairy products—Not only a deleterious reaction but also a rich source of flavour compounds. Food & Function, 3, 1231–1241.

    Article  CAS  Google Scholar 

  • Nickerson, T., & Moore, E. (1974). Alpha lactose crystallisation rate. Journal of Dairy Science, 57, 160–164.

    Article  CAS  Google Scholar 

  • O’Brien, J. (1997). Reaction chemistry of lactose: Non-enzymatic degradation pathways and their significance in dairy products. In P. F. Fox (Ed.), Advanced dairy chemistry (Vol. 3, 2nd ed., pp. 155–216). London: Chapman & Hall.

    Google Scholar 

  • Oliveira, M. N., Penna, A. L. B., & Nevarez, H. G. (2009). Production of evaporated milk, sweetened condensed milk and ‘Dulce de Leche’. In A. Y. Tamime (Ed.), Dairy powder and concentrated products (pp. 149–179). West Sussex: Blackwell Publishing Ltd.

    Google Scholar 

  • Paravisini, L., Gourrat-Pernin, K., Gouttefangeas, C., Moretton, C., Nigay, H., Dacremont, C., & Guichard, E. (2012). Identification of compounds responsible for the odorant properties of aromatic caramel. Flavour and Fragrance Journal, 27, 424–432.

    Article  CAS  Google Scholar 

  • Pauletti, M. S., Venier, A., Sabbag, N., & Stechina, D. (1990). Rheological characterization of Dulce de Leche, a confectionery dairy product. Journal of Dairy Science, 73, 601–603.

    Article  Google Scholar 

  • Penci, M. C., & Marin, M. A. (2016). Dulce de Leche: Technology, quality, and consumer aspects of the traditional milk caramel of South America. In K. Kristbergsson & J. Oliveira (Eds.), Traditional foods. Integrating food science and engineering knowledge into the food chain (Vol. 10, pp. 123–136). Boston, MA: Springer.

    Google Scholar 

  • Ranalli, N., Andres, S. C., & Califano, A. N. (2012). Physicochemical and rheological characterization of Dulce de Leche. Journal of Texture Studies, 43(2), 115–123.

    Article  Google Scholar 

  • Rodriguez, A., Lema, P., Bessio, M. I., Moyna, G., Panizzolo, L. A., & Ferreira, F. (2019). Isolation and characterization of melanoidins from Dulce de Leche, a confectionary dairy product. Molecules, 24, 4163. https://doi.org/10.3390/molecules24224163

    Article  CAS  PubMed Central  Google Scholar 

  • Rozycki, S. D., Pauletti, M. S., Costa, S. C., Piagentini, A. M., & Buera, M. P. (2007). The kinetics of colour and fluorescence development in concentrated milk systems. International Dairy Journal, 17, 907–915.

    Article  CAS  Google Scholar 

  • Rozycki, S. D., Buera, M. P., Piagentini, A. M., Costa, S. C., & Pauletti, M. S. (2010). Advances in the study of the kinetics of color and fluorescence development in concentrated milk systems. Journal of Food Engineering, 101, 59–66.

    Article  Google Scholar 

  • Stephani, R., Francisquini, J., Perrone, I., Fernandes de Carvalho, A., & Cappa de Oliveira, L. (2019). Dulce de Leche—Chemistry and processing technology. In K. Javed (Ed.), Milk production, processing and marketing. https://doi.org/10.5772/intechopen.82677

    Chapter  Google Scholar 

  • Tweig, W., & Nickerson, T. (1968). Kinetics of lactose crystallization. Journal of Dairy Science, 51, 1720–1724.

    Article  Google Scholar 

  • Wang, H.-Y., Qian, H., & Yao, W.-R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chemistry, 128, 573–584.

    Article  CAS  Google Scholar 

  • Zabbia, A., Buys, E. M., & De Kock, H. L. (2012). Undesirable sulphur and carbonyl flavor compounds in UHT milk: A review. Critical Reviews in Food Science and Nutrition, 52, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Zalazar, C. A. (2003). Concentrated milk products. Dulce de Leche. In H. Roginski, J. Fuquay, & P. F. Fox (Eds.), Encyclopedia of dairy sciences (pp. 503–509). London: Academic Press.

    Google Scholar 

  • Zarpelon, J., Molognoni, L., Valese, A., Ribeiro, D., & Daguer, H. (2016). Validation of an automated method for the analysis of fat content of Dulce de Leche. Journal of Food Composition and Analysis, 48, 1–7.

    Article  CAS  Google Scholar 

References for Section 3.3

  • Anon. (2003). 4 condensed milk plants shut down. The Daily Star. Retrieved October 13, 2020, from https://www.thedailystar.net/news/4-condensed-milk-plants-shut-down. 12:00 AM, January 24, 2003. Last modified: 04:48 PM, May 26, 2013.

    Google Scholar 

  • Clarke, P. T. (1999). Recombined sweetened condensed milk. The survivor (Abstract). Werribee, VIC: Food Science Australia. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=BE2000001144

    Google Scholar 

  • Cornal, J. (2020). Retrieved October 13, 2020, from https://www.dairyreporter.com/Article/2020/06/22/Lactalis-Ingredients-launches-new-SMP-for-condensed-milk-market

  • Farrag, S. A., El-Gazar, F. E., & Marth, E. H. (1990). Fate of Listeria monocytogenes in sweetened condensed and evaporated milk during storage at 7° or 21°C. Journal of Food Protection, 53, 747–750.

    Article  PubMed  Google Scholar 

  • Haque, S. A. M. A. (2009). Bangladesh: Social gains from dairy development in ‘Smallholder dairy development: Lessons learned in Asia’. Animal Production and Health Commission for Asia and the Pacific, Food and Agriculture Organisation of the United Nations, FAO, Rome. RAP publication 2009/02. Retrieved October 13, 2020, from http://www.fao.org/3/i0588e/I0588E03.htm

  • Juffrie, M., Sartika, R. A. D., Sparringa, R. A., Wibowo, L., & Lukito, W. (2020). Consumption patterns of sweetened condensed milk in the diet of young Indonesian children and its potential nutritional health consequences. Asia Pacific Journal of Clinical Nutrition, 29, 16–26.

    PubMed  Google Scholar 

  • Lawrence, A., Clarke, P. T., & Augustin, M. A. (2001). Effects of heat treatment and homogenisation pressure during sweetened condensed milk manufacture on product quality. Australian Journal of Dairy Technology, 56, 192.

    Google Scholar 

  • Noda, K., Endo, M., & Takahashi, T. (1986). The effect of calcium on the viscosity of sweetened condensed milk. Nippon Shokuhin Kogyo Gakkaishi, 33, 572–578.

    Article  CAS  Google Scholar 

  • Patel, A. A., Gandhi, H., Singh, S., & Patil, G. R. (1996). Shelf-life modeling of sweetened condensed milk based on kinetics of Maillard browning. Journal of Food Processing & Preservation, 20, 431–451.

    Article  Google Scholar 

  • Renhe, I. R. T., Pereira, D. B. C., de Sa, J. F. O., dos Santos, M. C., Teodoro, V. A. M., Magalhaes, F. A. R., Perrone, I. T., & da Silva, P. H. F. (2018). Characterization of physicochemical composition, microbiology, sensory evaluation and microscopical attributes of sweetened condensed milk. Food Science and Technology, 38, 293–298.

    Article  Google Scholar 

  • Samel, R., & Muers, M. (1962a). The age-thickening of sweetened condensed milk: III. The effect of ions. Journal of Dairy Research, 29, 269–277. https://doi.org/10.1017/S0022029900011080

    Article  CAS  Google Scholar 

  • Samel, R., & Muers, M. (1962b). The age-thickening of sweetened condensed milk: II. Effects of temperature and of storage. Journal of Dairy Research, 29(3), 259–267. https://doi.org/10.1017/S0022029900011079

    Article  CAS  Google Scholar 

  • Schumacher, A. B., Englert, A. H., Susin, J. B., Marczak, L. D. F., & Cardozo, N. S. M. (2015). An automated measuring methodology for crystal size in sweetened condensed milk using digital image processing and analysis. Food Analytical Methods, 8, 1858–1867. https://doi.org/10.1007/s12161-014-0054-x

    Article  Google Scholar 

  • Siddique, M. N. A., Nurul Islam, M. N., Habib, M. R., Harun-ur-Rashid, M., Islam, M. A., & Afrin, S. (2017). Evaluation of the quality of sweetened condensed milk of different brands available in local markets of Bangladesh. International Journal of Natural and Social Sciences, 4(1), 64–70. (ISSN 2313-4461).

    Google Scholar 

  • Sjollema, A. (1990). Modified viscosity test for skim milk powders used raw material for recombined sweetened condensed milk. In Recombination of milk and milk products (pp. 126–134). Schaerbeek: International Dairy Federation. Special Issue No. 9001. ISBN 92 9098 003 0.

    Google Scholar 

  • Walstra, P., Geurts, T. J., Noomen, A., Jellema, A., & van Boekel, M. A. J. S. (1999a). Sweetened condensed milk. In Dairy technology—Principles of milk properties and processes (pp. 435–443). New York: Marcel Dekker, Inc. ISBN: 082470228X.

    Google Scholar 

References for Section 3.4

  • Aguilar, C. A., & Ziegler, G. R. (1995). Viscosity of molten milk chocolate with lactose from spray dried whole-milk powders. Journal of Food Science, 60, 120–124.

    Article  CAS  Google Scholar 

  • Aguilera, J. M., del Valle, J. M., & Karel, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science and Technology, 6, 149–155.

    Article  CAS  Google Scholar 

  • Aydogdu, T., Ho, Q. T., Ahrne, L., O’Mahony, J. A., & McCarthy, N. A. (2021). The influence of milk minerals and lactose on heat stability and age-thickening of milk protein concentrate systems. International Dairy Journal, 118, 105037. https://doi.org/10.1016/j.idairyj.2021.105037

    Article  CAS  Google Scholar 

  • Baechler, R., Clerc, M.-F., Ulrich, S., & Benet, S. (2005). Physical changes in heat-treated whole milk powder. Le Lait, 85, 304–315.

    Article  Google Scholar 

  • Bhandari, B. R., & Howes, T. (1999). Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering, 40, 71–79.

    Article  Google Scholar 

  • Boonyai, P., Bhandari, B., & Howes, T. (2004). Stickiness measurement techniques for food powders: A review. Powder Technology, 145, 34–46.

    Article  CAS  Google Scholar 

  • Bronlund, J. (1997). The modelling of caking in bulk lactose. Ph.D thesis. Proc and Env Technol, Massey Univ., NZ.

    Google Scholar 

  • Bronlund, J., & Paterson, T. (2004). Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders. International Dairy Journal, 14, 247–254.

    Article  CAS  Google Scholar 

  • Buma, T. J. (1971). Free fat in spray-dried whole milk 5. Cohesion, determination, influence of particle size, moisture content and free-fat content. Netherlands Milk and Dairy Journal, 25, 107–122.

    CAS  Google Scholar 

  • Carpin, M., Bertelsen, H., Bech, J. K., Jeantet, R., Risbo, J., & Schuck, P. (2016). Caking of lactose: A critical review. Trends in Food Science and Technology, 53, 1–12.

    Article  CAS  Google Scholar 

  • Chuy, L. E., & Labuza, T. P. (1994). Caking and stickiness of dairy-based food powders as related to glass transition. Journal of Food Science, 59, 43–46.

    Article  CAS  Google Scholar 

  • Cuq, B., Gaiani, C., Turchiuli, C., Galet, L., Scher, J., Jeantet, R., et al. (2013). Advances in food powder agglomeration engineering. In J. Henry (Ed.), Advances in food and nutrition research (Vol. 69, pp. 41–103). Cambridge: Elsevier Academic Press Inc.

    Google Scholar 

  • Faldt, P., & Berganstahl, B. (1995). Fat encapsulation in spray-dried food powders. Journal of the American Oil Chemists’ Society, 72, 171–176.

    Google Scholar 

  • Fitzpatrick, J. J., Iqbal, T., Delaney, C., Twomey, M., & Keogh, M. K. (2004). Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. Journal of Food Engineering, 64, 435–444.

    Article  Google Scholar 

  • Foerster, M., Gengenbach, T., Woo, M. W., & Selomulya, C. (2016). The influence of the chemical surface composition on the drying process of milk droplets. Advanced Powder Technology, 27, 2324–2334.

    Article  CAS  Google Scholar 

  • Foster, K. L., Bronlund, J., & Patterson, T. (2005). The contribution of milk fat towards the caking of dairy powders. International Dairy Journal, 15, 85–91.

    Article  CAS  Google Scholar 

  • Fu, X., Huck, D., Makein, L., Armstrong, B., Willen, U., & Freeman, T. (2020). Effect of particle shape and size on flow properties of lactose powders. Particuology, 10, 203–208.

    Article  Google Scholar 

  • Gaiani, C., Ehrhardt, J. J., Scher, J., Hardy, J., Desobry, S., & Banon, S. (2006). Surface composition of dairy powders observed by X-ray photoelectron spectroscopy and effects on their rehydration properties. Colloids and Surfaces B: Biointerfaces, 49, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Gaiani, C., Schuck, P., Scher, J., Ehrhardt, J. J., Arab-Tehrany, E., Jacquot, M., et al. (2009). Native phosphocaseinate powder during storage: Lipids released onto the surface. Journal of Food Engineering, 94, 130–134.

    Article  CAS  Google Scholar 

  • Gaiani, C., Morand, C., Sanchez, C., ArabTehrany, E., Jacquot, M., Schuck, P., Jeantet, R., & Scher, J. (2010). How surface composition of high milk proteins powders is influenced by spray-drying temperature. Colloids and Surfaces B: Biointerfaces, 75, 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Hennigs, C., Kockel, T. K., & Langrish, T. A. G. (2001). New measurements of the sticky behaviour of skim milk powder. Drying Technology, 19, 471–484.

    Article  CAS  Google Scholar 

  • Higgins, J. J., Lynn, R. D., Smith, J. F., & Marshall, K. R. (1995). Protein standardization of milk and milk products—Report on responses to three IDF questionnaires. Bulletin of the International Dairy Federation, 304(1995), 26–49.

    CAS  Google Scholar 

  • Hogan, S. A., & O’Callaghan, D. J. (2010). Influence of milk proteins on the development of lactose-induced stickiness in dairy powders. International Dairy Journal, 20, 212–221.

    Article  CAS  Google Scholar 

  • Hogan, S. A., O’Riordan, E. D., & O’Sullivan, M. (2003). Microencapsulation and oxidative stability of spray-dried fish oil emulsions. Journal of Microencapsulation, 20, 675–688.

    Article  CAS  PubMed  Google Scholar 

  • Hogan, S., O’Callaghan, D., & Bloore, G. (2009). Application of fluidised bed stickiness apparatus to dairy powder production. Milchwissenschaft, 64, 308–311.

    CAS  Google Scholar 

  • Islam, M. I. U., & Langrish, T. A. G. (2010). An investigation into lactose crystallization under high temperature conditions during spray drying. Food Research International, 43, 46–56.

    Article  CAS  Google Scholar 

  • Jouppila, K., & Roos, Y. H. (1994). Glass transitions and crystallisation in milk powders. Journal of Dairy Science, 77, 2907–2915.

    Article  CAS  Google Scholar 

  • Kelly, P. M. (2007). Milk powders. In Y. H. Hui, C. Clary, M. M. Farid, O. O. Fasina, A. Noomhorm, & J. Weti-Chanes (Eds.), Food drying science and technology. Lancaster, PA: Destech Publications, Inc. Chap. 30.

    Google Scholar 

  • Kelly, G. M., O’Mahony, J. A., Kelly, A. L., Huppertz, T., Kennedy, D., & O’Callaghan, D. J. (2015). Influence of protein concentration on surface composition and physico-chemical properties of spray-dried milk protein concentrate powders. International Dairy Journal, 51, 34–40.

    Article  CAS  Google Scholar 

  • Keogh, M. K., O’Kennedy, B. T., Kelly, J., Auty, M. A., Kelly, P. M., Fureby, A., & Haahr, A.-M. (2001). Stability to oxidation of spray-dried fish oil powder microencapsulated using milk ingredients. Journal of Food Science, 66, 217–224.

    Article  CAS  Google Scholar 

  • Kim, E. H.-J., Chen, X. D., & Pearce, D. (2003). On the mechanisms of surface formation and the surface compositions of industrial milk powders. Drying Technology, 21, 265–278.

    Article  CAS  Google Scholar 

  • Knipschildt, M. E. (1986). Drying of milk and milk products. In R. K. Robinson (Ed.), Modern dairy technology—Advances in milk processing (pp. 131–234). London: Elsevier Applied Science.

    Google Scholar 

  • Kondor, A., & Hogan, S. A. (2017). Relationships between surface energy analysis and functional characteristics of dairy powders. Food Chemistry, 237, 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  • Li, R., Roo, Y., & Miao, S. (2017). Characterization of mechanical and encapsulation properties of lactose/maltodextrin/WPI matrix. Food Hydrocolloids, 63, 149–159.

    Article  CAS  Google Scholar 

  • Listiohadi, Y., Hourigan, J., Sleigh, R., & Steele, R. (2005). An exploration of the caking of lactose in whey and skim milk powders. Australian Journal of Dairy Technology, 60, 207–213.

    CAS  Google Scholar 

  • Lloyd, R. J., Chen, X. D., & Hargreaves, J. B. (1996). Glass transition and caking of spray-dried lactose. International Journal of Food Science and Technology, 31, 305–311.

    Article  CAS  Google Scholar 

  • Maciel, G. M., Chaves, K. S., Grosso, C. R. F., & Gigante, M. L. (2014). Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. Journal of Dairy Science, 97, 1991–1998.

    Article  CAS  PubMed  Google Scholar 

  • Maher, P. G., Auty, M. A. E., Roos, Y. H., Zychowski, L. M., & Fenelon, M. A. (2015). Microstructure and lactose crystallization properties in spray dried nanoemulsions. Food Structure, 3, 1–11.

    Article  Google Scholar 

  • Malafronte, L., Ahrne, L., Innings, F., Jongsma, A., & Rasmuson, A. (2015). Prediction of regions of coalescence and agglomeration along a spray dryer—Application to skim milk powder. Chemical Engineering Research and Design, 104, 703–712.

    Article  CAS  Google Scholar 

  • Masum, A. K. M., Chandrapala, J., Huppertz, T., Adhikari, B., & Zisu, B. (2019). Effect of lactose-to-maltodextrin ratio on emulsion stability and physicochemical properties of spray-dried infant milk formula powders. Journal of Food Engineering, 254, 34–41.

    Article  CAS  Google Scholar 

  • Masum, A. K. M., Chandrapala, J., Huppertz, T., Adhikari, B., & Zisu, B. (2020a). Influence of drying temperatures and storage parameters on the physicochemical properties of spray-dried infant milk formula powders. International Dairy Journal, 105, 104696.

    Article  CAS  Google Scholar 

  • Masum, A. K. M., Chandrapala, J., Huppertz, T., Adhikari, B., & Zisu, B. (2020b). Effect of storage conditions on the physicochemical properties of infant milk formula powders containing different lactose-to-maltodextrin ratios. Food Chemistry, 319, 126591.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, N. A., Gee, V. L., Hickey, D. K., Kelly, A. L., O’Mahony, J. A., & Fenelon, M. A. (2013). Effect of protein content on the physical stability and microstructure of a model infant formula. International Dairy Journal, 29, 53–59.

    Article  CAS  Google Scholar 

  • Miao, S., & Roos, Y. R. (2006). Isothermal study of nonenzymatic browning kinetics in spray-dried and freeze-dried systems at different relative vapor pressure environments. Innovative Food Science and Emerging Technologies, 7, 182–194.

    Article  CAS  Google Scholar 

  • Mistry, V. V. (2002). Manufacture of high milk protein powder. Le Lait, 82, 515–522.

    Article  CAS  Google Scholar 

  • Mistry, V. V., Hassan, H. N., & Robison, D. J. (1992). Effect of lactose and protein on the microstructure of dried milk. Food Structure, 11, 73–82.

    CAS  Google Scholar 

  • Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils—A review. Molecules, 25, 3873.

    Article  CAS  PubMed Central  Google Scholar 

  • Morgan, F., Appolonia Nouzille, C., Baechler, R., Vuataz, G., & Raemy, A. (2005). Lactose crystallisation and early Maillard reaction in skim milk powder and whey protein concentrates. Le Lait, 85, 315–323.

    Article  CAS  Google Scholar 

  • Murphy, E. G., Fenelon, M. A., Roos, Y. H., & Hogan, S. A. (2014). Decoupling macronutrient interactions during heating of model infant milk formulas. Journal of Agricultural and Food Chemistry, 62, 10585–10593.

    Article  CAS  PubMed  Google Scholar 

  • Murrieta-Pazos, I., Gaiani, C., Galet, L., Calvet, R., Cuq, B., & Scher, J. (2012a). Food powders: Surface and form characterization revisited. Journal of Food Engineering, 112, 1–21.

    Article  Google Scholar 

  • Murrieta-Pazos, I., Gaiani, C., Galet, L., & Scher, J. (2012b). Composition gradient from surface to core in dairy powders: Agglomeration effect. Food Hydrocolloids, 26, 149–158.

    Article  CAS  Google Scholar 

  • Nijdam, J. J., & Langrish, T. A. G. (2006). The effect of surface composition on the functional properties of milk powders. Journal of Food Engineering, 77, 919–925.

    Article  CAS  Google Scholar 

  • Nijdam, J., Ibach, A., & Kind, M. (2008). Fluidisation of whey powders above the glass-transition temperature. Powder Technology, 187, 53–61.

    Article  CAS  Google Scholar 

  • O’Callaghan, D. J., & Hogan, S. A. (2013). The physical nature of stickiness in the spray drying of dairy products—A review. Dairy Science & Technology, 93, 331–346.

    Article  Google Scholar 

  • O’Donoghue, L. T., Haque, M. K., Kennedy, D., Laffir, F. R., Hogan, S. A., O’Mahony, J. A., & Murphy, E. G. (2019). Influence of particle size on the physicochemical properties and stickiness of dairy powders. International Dairy Journal, 98, 54–63.

    Article  Google Scholar 

  • O’Donoghue, L. T., Haque, M. K., Hogan, S. A., Laffir, F. R., O’Mahony, J. A., & Murphy, E. G. (2020). Dynamic mechanical analysis as a complementary technique for stickiness determination in model whey protein powders. Foods, 9, 1295.

    Article  PubMed Central  Google Scholar 

  • Olaleye, A. K., Shardt, O., Walker, G. M., & Van den Akker, H. E. A. (2019). Pneumatic conveying of cohesive dairy powder: Experiments and CFD-DEM simulations. Powder Technology, 357, 193–213.

    Article  CAS  Google Scholar 

  • Oliver, C. M., & Augustin, M. A. (2009). Using dairy ingredients for encapsulation. In Dairy-derived ingredients. Woodhead publishing series in food science, technology and nutrition (pp. 565–588). Sawston: Woodhead Publishing Ltd.

    Google Scholar 

  • Ozkan, N., Walishinghe, N., & Chen, X. D. (2002). Characterization of stickiness and cake formation in whole and skim milk powders. Journal of Food Engineering, 55, 293–303.

    Article  Google Scholar 

  • Ozmen, L., & Langrish, T. A. G. (2002). Comparison of glass transition temperature and sticky point temperature for skim milk powder. Drying Technology, 20, 1177–1192.

    Article  CAS  Google Scholar 

  • Pallansch, M. J. (1972). Procs. Whey Products Conference. Washington, DC: Dairy Products Laboratory, Agricultural Research Service, USDA. Eastern Region Research Laboratory Publication No. 3779.

    Google Scholar 

  • Paterson, A. H. J., Brooks, G. F., Bronlund, J. E., & Foster, K. D. (2005). Development of stickiness in amorphous lactose at constant T-Tg levels. International Dairy Journal, 15, 513–519.

    Article  CAS  Google Scholar 

  • Paterson, A. H., Bronlund, J. E., Zuo, J. Y., & Chatterjee, R. (2007). Analysis of particle-gun derived dairy powder stickiness curves. International Dairy Journal, 17, 860–865.

    Article  Google Scholar 

  • Paterson, A., Ripberger, G., & Bridges, R. (2015). Measurement of the viscosity of freeze dried amorphous lactose near the glass transition temperature. International Dairy Journal, 43, 27–32.

    Article  CAS  Google Scholar 

  • Pisecky, J. (1997). Handbook of milk powder manufacture (p. 131). Soeborg: Niro A/S.

    Google Scholar 

  • Roetman, K. (1979). Crystalline lactose and the structure of spray-dried milk products as observed by scanning electron microscopy. Netherlands Milk and Dairy Journal, 33, 1–11.

    CAS  Google Scholar 

  • Roge, B., & Mathlouthi, M. (2003). Caking of white crystalline sugar. International Sugar Journal, 105, 128–136.

    CAS  Google Scholar 

  • Roos, Y. H. (2002). Importance of glass transition and water activity to spray drying and stability of dairy powders. Le Lait, 82, 475–484.

    Article  CAS  Google Scholar 

  • Roos, Y. H. (2010). Glass transition temperature and its relevance in food processing. Annual Review of Food Science and Technology, 1, 469–496.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, M., & Young, S. L. (1993). Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milkfat—Structure evaluation. Food Structure, 12, 31–41.

    CAS  Google Scholar 

  • Saxena, J., Adhikari, B., Brkljac, R., Huppertz, T., Chandrapala, J., & Zisu, B. (2019). Physicochemical properties and surface composition of infant formula powders. Food Chemistry, 297, 124967.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, J., Adhikari, B., Brkljac, R., Huppertz, T., Zisu, B., & Chandrapala, J. (2021). Influence of lactose pre-crystallization on the storage stability of infant formula powder containing lactose and maltodextrin. Food Hydrocolloids, 111, 106385.

    Article  CAS  Google Scholar 

  • Schuck, P., Blanchard, E., Dolivet, A., Mejean, S., Onillon, E., & Jeantet, R. (2005). Water activity and glass transition in dairy ingredients. Le Lait, 85, 294–304.

    Article  Google Scholar 

  • Schuck, P., Mejean, S., Dolivet, A., Jeantet, R., & Bhandari, B. (2006). Keeping quality of dairy ingredients. In Proc. 27th Int. Dairy Congr. 20–23 October 2006, Shanghai, China.

    Google Scholar 

  • Shrestha, A. K., Howes, T., Adhikari, B. P., Wood, B. J., & Bhandari, B. R. (2007). Effect of protein concentration on the surface composition, water sorption and glass transition temperature of spray-dried skim milk powders. Food Chemistry, 104, 1436–1444.

    Article  CAS  Google Scholar 

  • Tanguy, G., Dolivet, A., Mejean, S., Garreau, D., Talamo, F., Postet, P., Jeantet, R., & Schuck, P. (2017). Efficient process for the production of permeate powders. Innovative Food Science and Emerging Technologies, 41, 144–149.

    Article  CAS  Google Scholar 

  • Thomas, M. E. C., Scher, J., Desobry-Banon, S., & Desobry, S. (2004). Milk powders ageing: Effect on physical and functional properties. Critical Reviews in Food Science and Nutrition, 44, 297–322.

    Article  CAS  PubMed  Google Scholar 

  • Toikkanen, O., Outinen, M., Malafront, L., & Rojas, O. J. (2018). Formation and structure of insoluble particles in reconstituted model infant formula powders. International Dairy Journal, 82, 19–27.

    Article  CAS  Google Scholar 

  • Turchiuli, C., Smail, R., & Dumoulin, E. (2013). Fluidized bed agglomeration of skim milk powder: Analysis of sampling for the follow-up of agglomerate growth. Powder Technology, 238, 161–168.

    Article  CAS  Google Scholar 

  • Vega, C., & Roos, Y. H. (2006). Invited review: Spray-dried dairy and dairy-like emulsions—Compositional considerations. Journal of Dairy Science, 89, 383–401.

    Article  CAS  PubMed  Google Scholar 

  • Vuatez, G. (2002). The phase diagram of milk: A new tool for optimising the drying process. Le Lait, 82, 485–500.

    Google Scholar 

  • Young, S. L., Sarda, X., & Rosenberg, M. (1993). Microencapsulating properties of whey proteins. 1. Microencapsulation of anhydrous milk fat. Journal of Dairy Science, 76, 2686–2877.

    Article  Google Scholar 

  • Zhu, P., Mejean, S., Blanchard, E., Jeantet, R., & Schuck, P. (2011). Prediction of dry mass glass transition temperature and the spray drying behaviour of a concentrate using a desorption method. Journal of Food Engineering, 105, 460–467.

    Article  Google Scholar 

References for Section 3.5

  • ADPI (American Dairy Products Institute). (n.d.). Concentrated milk protein standards. Retrieved November 5, 2020, from https://www.adpi.org/Portals/0/Standards/ConcentratedMilkPowder_book.pdf

  • Alm, L. (1982). Effect of fermentation on lactose, glucose, and galactose content in milk and suitability of fermented milk products for lactose intolerant individuals. Journal of Dairy Science, 65, 346–352.

    Article  CAS  PubMed  Google Scholar 

  • Anbukkarasi, K., UmaMaheswari, T., Hemalatha, T., Nanda, D. K., Singh, P., & Singh, R. (2014). Preparation of low galactose yogurt using cultures of Gal(+) Streptococcus thermophilus in combination with Lactobacillus delbrueckii ssp. Bulgaricus. Journal of Food Science and Technology, 51, 2183–2189. https://doi.org/10.1007/s13197-014-1262-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold, J. W., Simpson, J. B., Roach, J., Bruno-Barcena, J. M., & Azcarate-Peril, M. A. (2018). Prebiotics for lactose intolerance: Variability in galacto-oligosaccharide utilization by intestinal Lactobacillus rhamnosus. Nutrients, 10, 1517.

    Article  PubMed Central  Google Scholar 

  • Churakova, E., Peri, K., Soul Vis, J. S., Smith, D. S., Beam, J. M., Vijverberg, M. P., Stor, M. C., & Winter, R. T. (2019). Accurate analysis of residual lactose in low-lactose milk: Comparing a variety of analytical techniques. International Dairy Journal, 96, 126–131.

    Article  CAS  Google Scholar 

  • Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019b). Review—Lactose-free dairy products: Market developments, production, nutrition and health benefits. Nutrients, 11, 551. https://doi.org/10.3390/nu11030551

    Article  CAS  PubMed Central  Google Scholar 

  • EFSA. (2010). EFSA panel on dietetic products, nutrition and allergies (NDA); Scientific opinion on lactose thresholds in lactose intolerance and galactosaemia. EFSA Journal, 8, 1777. https://doi.org/10.2903/j.efsa.2010.1777. 29 p. Retrieved from www.efsa.europa.eu/efsajournal.htm

  • Harju, M., Kallioinen, H., & Tossavainen, O. (2012). Lactose hydrolysis and other conversions in dairy products: Technological aspects. International Dairy Journal, 22, 104–109.

    Article  CAS  Google Scholar 

  • Kato, K., Ishida, S., Tanaka, M., Mitsuyama, E., Jin-zhong, X., & Odamaki, T. (2018). Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS One, 13, e0206189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins, G. N., Ureta, M. M., Tymczyszyn, E. E., Castilho, P. C., & Gomez-Zavaglia, A. (2019). Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Frontiers in Nutrition, 6, 78. https://doi.org/10.3389/fnut.2019.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misselwitz, B., Butter, M., Verbeke, K., & Fox, M. R. (2019). Update on lactose malabsorption and intolerance: Pathogenesis, diagnosis and clinical management. Gut, 68, 2080–2091. https://doi.org/10.1136/gutjnl-2019-318404

    Article  CAS  PubMed  Google Scholar 

  • Silanikove, N., Leitner, G., & Merin, U. (2015). The interrelationships between lactose intolerance and the modern dairy industry: Global perspectives in evolutional and historical backgrounds. Nutrients, 7, 7312–7331. https://doi.org/10.3390/nu7095340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szilagyi, A. (2015). Review—Adaptation to lactose in lactase non persistent people: Effects on intolerance and the relationship between dairy food consumption and evaluation of diseases. Nutrients, 2015(7), 6751–6779. https://doi.org/10.3390/nu7085309

    Article  CAS  Google Scholar 

  • Tossavainen, O., & Sahlstein, J. (2003). Process for producing a lactose-free milk product. Patent application WO2003094623A1.

    Google Scholar 

  • Walstra, P., Geurts, T. J., Noomen, A., Jellema, A., & van Boekel, M. A. J. S. (1999b). Dairy technology: Principles of milk properties and processes (pp. 517–537). New York: Marcel Dekker Inc. Chapter 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Douglas Goff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goff, H.D., Hynes, E.H., Perotti, M.C., Kelly, P.M., Hogan, S.A. (2022). Significance of Lactose in Dairy Products. In: McSweeney, P.L.H., O'Mahony, J.A., Kelly, A.L. (eds) Advanced Dairy Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-92585-7_3

Download citation

Publish with us

Policies and ethics