Skip to main content

Solid and Liquid States of Lactose

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Lactose occurs in various forms, including α-, β- and mixed α/β-crystals and solid and liquid amorphous states. These states of lactose are often stable at low water contents, but water as a plasticizer may cause various amorphous-crystalline transitions during storage of lactose-containing materials. Furthermore, deliquescence of crystalline lactose may occur in dry blends at high storage humidity, in addition to various stickiness and caking problems typical of amorphous lactose during storage of dairy powders. State diagrams of lactose provide important tools for stability control of lactose in dehydration and storage of lactose-containing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, B., Howes, T., Shrestha, A., & Bhandari, B. R. (2007). Effect of surface tension and viscosity on the surface stickiness of carbohydrate and protein solutions. Journal of Food Science, 79, 1136–1143.

    CAS  Google Scholar 

  • Allan, M., & Mauer, L. J. (2016). Comparison of methods for determining the deliquescence points of single crystalline ingredients and blends. Food Chemistry, 195, 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Allan, M. C., Grush, E., & Mauer, L. J. (2020). RH-temperature stability diagram of α- and β-anhydrous and monohydrate lactose crystalline forms. Food Research International, 127, 108717.

    Article  CAS  PubMed  Google Scholar 

  • Bellows, R. J., & King, C. J. (1973). Product collapse during freeze drying of liquid foods. AIChE Symposium Series, 69(132), 33–41.

    CAS  Google Scholar 

  • Berlin, E., Anderson, A. B., & Pallansch, M. J. (1968a). Water vapor sorption properties of various dried milks and wheys. Journal of Dairy Science, 51, 1339–1344.

    Article  CAS  Google Scholar 

  • Berlin, E., Anderson, B. A., & Pallansch, M. J. (1968b). Comparison of water vapor sorption by milk powder components. Journal of Dairy Science, 51, 1912–1915.

    Article  Google Scholar 

  • Berlin, E., Anderson, B. A., & Pallansch, M. J. (1970). Effect of temperature on water vapor sorption by dried milk powders. Journal of Dairy Science, 53, 146–149.

    Article  CAS  Google Scholar 

  • Brennan, J. G., Herrera, J., & Jowitt, R. (1971). A study of some of the factors affecting the spray drying of concentrated orange juice, on a laboratory scale. Journal of Food Technology, 6, 295–307.

    Article  Google Scholar 

  • Chuy, L. E., & Labuza, T. P. (1994). Caking and stickiness of dairy-based food powders as related to glass transition. Journal of Food Science, 59, 43–46.

    Article  CAS  Google Scholar 

  • Darcy, P., & Buckton, G. (1997). The influence of heating/drying on the crystallisation of amorphous lactose after structural collapse. International Journal of Pharmaceutics, 158, 157–164.

    Article  CAS  Google Scholar 

  • Downton, G. E., Flores-Luna, J. L., & King, C. J. (1982). Mechanism of stickiness in hygroscopic, amorphous powders. Industrial & Engineering Chemistry Fundamentals, 21, 447–451.

    Article  CAS  Google Scholar 

  • Fan, F., & Roos, Y. H. (2015). X-ray diffraction analysis of lactose crystallization in freeze-dried lactose-whey protein systems. Food Research International, 67, 1–11.

    Article  CAS  Google Scholar 

  • Fitzpatrick, J. J., Barry, K., Cerqueira, P. S. M., Iqbal, T., O’Neill, J., & Roos, Y. H. (2007). Effect of composition and storage conditions on the flowability of dairy powders. International Dairy Journal, 17, 383–392.

    Article  CAS  Google Scholar 

  • Goff, H. D. (2002). Formation and stabilization of structure in ice-cream and related products. Current Opinion in Colloid & Interface Science, 7, 432–437.

    Article  CAS  Google Scholar 

  • Goff, H. D., Caldwell, K. B., Stanley, D. W., & Maurice, T. J. (1993). The influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream. Journal of Dairy Science, 76, 1268–1277.

    Article  CAS  Google Scholar 

  • Gordon, M., & Taylor, J. S. (1952). Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. Journal of Applied Chemistry, 2, 493–500.

    Article  CAS  Google Scholar 

  • Haque, M. K., & Roos, Y. H. (2004). Water sorption and plasticization behavior of spray-dried lactose/protein mixtures. Journal of Food Science, 69, E384–E391.

    Article  CAS  Google Scholar 

  • Haque, M. K., & Roos, Y. H. (2005). Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose. Carbohydrate Research, 340, 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Haque, M. K., & Roos, Y. H. (2006a). Differences in the physical state and thermal behavior of spray-dried and freeze-dried lactose and lactose/protein mixtures. Innovative Food Science and Emerging Technologies, 7, 62–73.

    Article  CAS  Google Scholar 

  • Haque, M. K., & Roos, Y. H. (2006b). Crystallisation and x-ray diffraction of crystals formed in water-plasticized amorphous spray-dried and freeze-dried lactose/protein mixtures. Journal of Food Science, 70, 359–366.

    Article  Google Scholar 

  • Hartel, R. W. (2001). Crystallization in foods. Gaithersburg, MD: Aspen.

    Google Scholar 

  • Hartel, R. W., & Shastry, A. V. (1991). Sugar crystallization in food products. Critical Reviews in Food Science and Nutrition, 30, 49–112.

    Article  CAS  PubMed  Google Scholar 

  • Herrington, B. L. (1934). Some physico-chemical properties of lactose. I. the spontaneous crystallization of supersaturated solutions of lactose. Journal of Dairy Science, 17, 501–518.

    Article  CAS  Google Scholar 

  • Jouppila, K., & Roos, Y. H. (1994a). Water sorption and time-dependent phenomena of milk powders. Journal of Dairy Science, 77, 1798–1808.

    Article  Google Scholar 

  • Jouppila, K., & Roos, Y. H. (1994b). Glass transitions and crystallization in milk powders. Journal of Dairy Science, 77, 2907–2915.

    Article  CAS  Google Scholar 

  • Jouppila, K., Kansikas, J., & Roos, Y. H. (1997). Glass transition, water plasticization, and lactose crystallization in skim milk powder. Journal of Dairy Science, 80, 3152–3160.

    Article  CAS  Google Scholar 

  • Kalichevsky, M. T., Blanshard, J. M. V., & Tokarczuk, P. F. (1993a). Effect of water content and sugars on the glass transition of casein and sodium caseinate. International Journal of Food Science and Technology, 28, 139–151.

    Article  CAS  Google Scholar 

  • Kalichevsky, M. T., Blanshard, J. M. V., & Marsh, R. D. L. (1993b). Applications of mechanical spectroscopy to the study of glassy biopolymers and related systems. In J. M. V. Blanshard & P. J. Lillford (Eds.), The glassy state in foods (pp. 133–156). Loughborough: Nottingham University Press.

    Google Scholar 

  • Kim, M. N., Saltmarch, M., & Labuza, T. P. (1981). Non-enzymatic browning of hygroscopic whey powders in open versus sealed pouches. Journal of Food Processing & Preservation, 5, 49–57.

    Article  Google Scholar 

  • King, N. (1965). The physical structure of dried milk. Dairy Science Abstracts, 27, 91–104.

    Google Scholar 

  • Labuza, T. P., & Saltmarch, M. (1981). The nonenzymatic browning reaction as affected by water in foods. In L. B. Rockland & G. F. Stewart (Eds.), Water activity: Influences on food quality (pp. 605–650). New York: Academic Press, Inc.

    Google Scholar 

  • Lai, H.-M., & Schmidt, S. J. (1990). Lactose crystallization in skim milk powder observed by hydrodynamic equilibria, scanning electron microscopy and 2H nuclear magnetic resonance. Journal of Food Science, 55, 994–999.

    Article  CAS  Google Scholar 

  • Lazar, M., Brown, A. H., Smith, G. S., Wong, F. F., & Lindquist, F. E. (1956). Experimental production of tomato powder by spray drying. Food Technology, 10, 129–134.

    Google Scholar 

  • Lea, C. H., & White, J. C. D. (1948). Effect of storage on skim-milk powder. Part III. Physical, chemical and palatability changes in the stored powders. The Journal of Dairy Research, 15, 298–340.

    Google Scholar 

  • Levine, H., & Slade, L. (1988a). Principles of “cryostabilization” technology from structure/property relationships of carbohydrate/water systems—A review. Cryo-Letters, 9, 21–63.

    CAS  Google Scholar 

  • Levine, H., & Slade, L. (1988b). “Collapse” phenomena—A unifying concept for interpreting the behavior of low moisture foods. In J. M. V. Blanshard & J. R. Mitchell (Eds.), Food structure—Its creation and evaluation (pp. 149–180). London: Butterworths.

    Google Scholar 

  • Levine, H., & Slade, L. (1989). A food polymer science approach to the practice of cryostabilization technology. Comments Agriculture and Food Chemistry, 1, 315–396.

    CAS  Google Scholar 

  • Lloyd, R. J., Chen, X. D., & Hargreaves, J. B. (1996). Glass transition and caking of spray-dried lactose. International Journal of Food Science and Technology, 31, 305–311.

    Article  CAS  Google Scholar 

  • Mauer, L. J. (2020). Chapter 6: Water-solid interactions in food ingredients and systems. In G. V. Barbosa-Cánovas, A. J. Fontana Jr., S. J. Schmidt, & T. P. Labuza (Eds.), Water activity in foods: Fundamentals and applications (2nd ed., pp. 123–159). Wiley.

    Chapter  Google Scholar 

  • Mauer, L. J., & Taylor, L. S. (2010). Deliquescence of pharmaceutical systems. Pharmaceutical Development and Technology, 15, 582–594.

    Article  CAS  PubMed  Google Scholar 

  • Miao, S., & Roos, Y. H. (2004). Comparison of nonenzymatic browning kinetics in spray-dried and freeze-dried carbohydrate-based food model systems. Journal of Food Science, 69, E322–E331.

    Article  CAS  Google Scholar 

  • Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., & Pöschl, U. (2009). Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry and Physics, 9, 9491–9522.

    Article  CAS  Google Scholar 

  • Nasirpour, A., Scher, J., Linder, M., & Desobry, S. (2006). Modeling of lactose crystallization and color changes in model infant foods. Journal of Dairy Science, 89, 2365–2373.

    Article  CAS  PubMed  Google Scholar 

  • Nickerson, T. A. (1974). Lactose. In B. H. Webb, A. H. Johnson, & J. A. Alford (Eds.), Fundamentals of dairy chemistry (2nd ed., pp. 273–324). Westport, CT: AVI Publishing Co., Inc.

    Google Scholar 

  • Nickerson, T. A., & Moore, E. E. (1972). Solubility interrelations of lactose and sucrose. Journal of Food Science, 37, 60–61.

    Article  Google Scholar 

  • Omar, A. M., & Roos, Y. H. (2006a). Glass transition and crystallization behaviour of freeze-dried lactose-salt mixtures. Lebensmittel-Wissenschaft und -Technologie, 40, 536–543.

    Article  Google Scholar 

  • Omar, A. M., & Roos, Y. H. (2006b). Water sorption and time-dependent crystallization behaviour of freeze-dried lactose-salt mixtures. Lebensmittel-Wissenschaft und -Technologie, 40, 520–528.

    Article  Google Scholar 

  • Paterson, A. H. J., Brooks, G. F., Bronlund, J. E., & Foster, K. D. (2005). Development of stickiness in amorphous lactose at constant TTg levels. International Dairy Journal, 15, 513–519.

    Article  CAS  Google Scholar 

  • Peleg, M. (1977). Flowability of food powders and methods for its evaluation. Journal of Food Process Engineering, 1, 303–328.

    Article  Google Scholar 

  • Peleg, M. (1983). Physical characteristics of food powders. In M. Peleg & E. B. Bagley (Eds.), Physical properties of foods (pp. 293–323). Westport, CT: AVI Publ. Co., Inc.

    Google Scholar 

  • Peleg, M., & Mannheim, C. H. (1977). The mechanism of caking of powdered onion. Journal of Food Processing & Preservation, 1, 3–11.

    Article  Google Scholar 

  • Potes, N., Kerry, J. P., & Roos, Y. H. (2012). Additivity of water sorption, alpha-relaxations and crystallization inhibition in lactose–maltodextrin systems. Carbohydrate Polymers, 89, 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  • Roos, Y. (1993). Melting and glass transitions of low molecular weight carbohydrates. Carbohydrate Research, 238, 39–48.

    Article  CAS  Google Scholar 

  • Roos, Y. (1995). Phase transitions in foods (p. 360). San Diego, CA: Academic Press, Inc.

    Google Scholar 

  • Roos, Y. H. (2002). Importance of glass transition and water activity to spray drying and stability of dairy powders. Le Lait, 82, 475–484.

    Article  CAS  Google Scholar 

  • Roos, Y. H. (2021). Glass transition and re-crystallization phenomena of frozen materials and their effect on frozen food quality. Foods, 10, 447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roos, Y. H., & Drusch, S. (2016). Phase transitions in foods (2nd ed.). Waltham, MA: Academic Press.

    Google Scholar 

  • Roos, Y., & Karel, M. (1990). Differential scanning calorimetry study of phase transitions affecting the quality of dehydrated materials. Biotechnology Progress, 6, 159–163.

    Article  CAS  Google Scholar 

  • Roos, Y., & Karel, M. (1991a). Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. Journal of Food Science, 56, 38–43.

    Article  CAS  Google Scholar 

  • Roos, Y., & Karel, M. (1991b). Amorphous state and delayed ice formation in sucrose solutions. International Journal of Food Science and Technology, 26, 553–566.

    Article  Google Scholar 

  • Roos, Y., & Karel, M. (1991c). Nonequilibrium ice formation in carbohydrate solutions. Cryo-Letters, 12, 367–376.

    CAS  Google Scholar 

  • Roos, Y., & Karel, M. (1991d). Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. Journal of Food Science, 56, 1676–1681.

    Article  CAS  Google Scholar 

  • Roos, Y., & Karel, M. (1992). Crystallization of amorphous lactose. Journal of Food Science, 57, 775–777.

    Article  CAS  Google Scholar 

  • Salameh, A. K., & Taylor, S. (2006a). Deliquescence-induced caking in binary powder blends. Pharmaceutical Development and Technology, 11, 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Salameh, A. K., & Taylor, S. (2006b). Role of deliquescence lowering in enhancing chemical reactivity in physical mixtures. The Journal of Physical Chemistry B, 110, 10190–10196.

    Article  CAS  PubMed  Google Scholar 

  • Salameh, A. K., Mauer, L. J., & Taylor, S. (2006). Deliquescence lowering in food ingredient mixtures. Journal of Food Science, 71, 10–16.

    Article  Google Scholar 

  • Saltmarch, M., & Labuza, T. P. (1980). Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders. Journal of Food Science, 45, 1231–1236.

    Article  CAS  Google Scholar 

  • Saltmarch, M., Vagnini-Ferrari, M., & Labuza, T. P. (1981). Theoretical basis and application of kinetics to browning in spray-dried whey food systems. Progress in Food & Nutrition Science, 5, 331–344.

    Google Scholar 

  • San Jose, C., Asp, N.-G., Burvall, A., & Dahlquist, A. (1977). Water sorption in hydrolyzed dry milk. Journal of Dairy Science, 60, 1539–1543.

    Article  CAS  Google Scholar 

  • Shimada, Y., Roos, Y., & Karel, M. (1991). Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. Journal of Agricultural and Food Chemistry, 39, 637–641.

    Article  CAS  Google Scholar 

  • Singh, K. J., & Roos, Y. H. (2005). Frozen state transitions of sucrose-protein-cornstarch mixtures. Journal of Food Science, 70, E198–E204.

    Article  CAS  Google Scholar 

  • Slade, L., & Levine, H. (1991). Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30, 115–360. https://doi.org/10.1080/10408399109527543. PMID: 1854434.

    Article  CAS  PubMed  Google Scholar 

  • Sugisaki, M., Suga, H., & Seki, S. (1968). Calorimetric study of the glassy state. IV. Heat capacities of glassy water and cubic ice. Bulletin of the Chemical Society of Japan, 41, 2591–2599.

    Article  CAS  Google Scholar 

  • Supplee, G. C. (1926). Humidity equilibria of milk powders. Journal of Dairy Science, 9, 50–61.

    Article  CAS  Google Scholar 

  • Troy, H. C., & Sharp, P. F. (1930). α and β lactose in some milk products. Journal of Dairy Science, 13, 140–157.

    Article  CAS  Google Scholar 

  • Vega, C., Goff, H. D., & Roos, Y. H. (2005). Spray drying of high-sucrose dairy emulsions: Feasibility and physicochemical properties. Journal of Food Science, 70, E244–E251.

    Article  CAS  Google Scholar 

  • Vuataz, G. (1988). Preservation of skim-milk powders: Role of water activity and temperature in lactose crystallization and lysine loss. In C. C. Seow (Ed.), Food preservation by water activity control (pp. 73–101). Amsterdam: Elsevier.

    Google Scholar 

  • Vuataz, G. (2002). The phase diagram of milk: A new tool for optimising the drying process. Le Lait, 82, 485–500.

    Article  CAS  Google Scholar 

  • Wallack, D. A., & King, C. J. (1988). Sticking and agglomeration of hygroscopic, amorphous carbohydrate and food powders. Biotechnology Progress, 4, 31–35.

    Article  CAS  Google Scholar 

  • Warburton, S., & Pixton, S. W. (1978). The moisture relations of spray dried skimmed milk. Journal of Stored Products Research, 14, 143–158.

    Article  CAS  Google Scholar 

  • White, G. W., & Cakebread, S. H. (1966). The glassy state in certain sugar-containing food products. Journal of Food Technology, 1, 73–82.

    Article  CAS  Google Scholar 

  • Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3707.

    Article  CAS  Google Scholar 

  • Wong, S. Y., & Hartel, R. W. (2014). Crystallisation in lactose refining—A review. Journal of Food Science, 79, 257–272.

    Article  Google Scholar 

  • Zografi, G., & Hancock, B. C. (1994). Water-solid interactions in pharmaceutical systems. Tokyo: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yrjö H. Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Potes, N., Roos, Y.H. (2022). Solid and Liquid States of Lactose. In: McSweeney, P.L.H., O'Mahony, J.A., Kelly, A.L. (eds) Advanced Dairy Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-92585-7_2

Download citation

Publish with us

Policies and ethics