Skip to main content

Water in Dairy Products

  • Chapter
  • First Online:
Advanced Dairy Chemistry
  • 618 Accesses

Abstract

Milk is, on average, constituted of 88% water, with the exact content being a function of a combination of seasonal, genetic and dietary factors (Holland et al. 1991; Timlin et al. 2021). Processing of milk into various products and derivatives involves numerous operations which change both the content of water in systems (see Fig. 11.1) and influences how water interacts with constituent dairy solids. Across products of all moisture contents, from liquid milks to powders, water remains a key constituent, the unusual properties (compared to similar molecules) of which have important effects on microbial and overall physical characteristics of such products. As a result, significant focus has been placed on understanding water in dairy products over the last 60 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Muhtaseb, A., McMinn, W., & Magee, T. (2002). Moisture sorption isotherm characteristics of food products: A review. Food and Bioproducts Processing, 80(2), 118–128.

    Article  CAS  Google Scholar 

  • Angell, C. (2002). Liquid fragility and the glass transition in water and aqueous solutions. Chemical Reviews, 102(8), 2627–2650.

    Article  CAS  PubMed  Google Scholar 

  • Badii, F., Martinet, C., Mitchell, J., & Farhat, I. (2006). Enthalpy and mechanical relaxation of glassy gelatin films. Food Hydrocolloids, 20(6), 879–884.

    Article  CAS  Google Scholar 

  • Barron, J. C., & Forsythe, S. J. (2007). Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. Journal of Food Protection, 70(9), 2111–2117.

    Article  PubMed  Google Scholar 

  • Basu, S., Shivhare, U., & Mujumdar, A. (2006). Models for sorption isotherms for foods: A review. Drying Technology, 24(8), 917–930.

    Article  Google Scholar 

  • Bell, L. N. (2007). Moisture effects on food’s chemical stability. In Water activity in foods: Fundamentals and applications (pp. 227–253). Hoboken, NJ: Wiley.

    Google Scholar 

  • Belloque, J., & Ramos, M. (1999). Application of NMR spectroscopy to milk and dairy products. Trends in Food Science and Technology, 10(10), 313–320.

    Article  CAS  Google Scholar 

  • Beuchat, L. R., Komitopoulou, E., Beckers, H., Betts, R. P., Bourdichon, F., Fanning, S., Joosten, H. M., & Ter Kuile, B. H. (2013). Low–water activity foods: Increased concern as vehicles of foodborne pathogens. Journal of Food Protection, 76(1), 150–172.

    Article  PubMed  Google Scholar 

  • Bhargava, A., & Jelen, P. (1996). Lactose solubility and crystal growth as affected by mineral impurities. Journal of Food Science, 61(1), 180–184.

    Article  Google Scholar 

  • Blahovec, J., & Yanniotis, S. (2008). GAB generalized equation for sorption phenomena. Food and Bioprocess Technology, 1(1), 82–90.

    Article  Google Scholar 

  • Blanshard, J., & Franks, F. (1987). Ice crystallization and its control in frozen-food systems. In J. M. V. Blanshard & P. Lillford (Eds.), Food Structure and behaviour (pp. 51–65). London: Academic Press.

    Google Scholar 

  • Boonyai, P., Bhandari, B., & Howes, T. (2004). Stickiness measurement techniques for food powders: A review. Powder Technology, 145(1), 34–46.

    Article  CAS  Google Scholar 

  • Bronlund, J. (1997). The modelling of caking in bulk lactose. Palmerston North: Massey University.

    Google Scholar 

  • Bronlund, J., & Paterson, T. (2004). Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders. International Dairy Journal, 14(3), 247–254.

    Article  CAS  Google Scholar 

  • Brunauer, S. (1945). The adsorption of gases and vapors. Vol. 1-Physical adsorption. Vancouver, BC: Read Books.

    Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.

    Article  CAS  Google Scholar 

  • Buera, P., Schebor, C., & Elizalde, B. (2005). Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations. Journal of Food Engineering, 67(1–2), 157–165.

    Article  Google Scholar 

  • Burin, L., & del Pilar Buera, M. (2002). β-Galactosidase activity as affected by apparent pH and physical properties of reduced moisture systems. Enzyme and Microbial Technology, 30(3), 367–373.

    Article  CAS  Google Scholar 

  • Burin, L., Buera, M., Hough, G., & Chirife, J. (2002). Thermal resistance of β-galactosidase in dehydrated dairy model systems as affected by physical and chemical changes. Food Chemistry, 76(4), 423–430.

    Article  CAS  Google Scholar 

  • Butler, B. (1998). Modelling industrial lactose crystallization. PhD Thesis. University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Chaudhary, V., Panyoyai, N., Small, D. M., Shanks, R. A., & Kasapis, S. (2017). Effect of the glass transition temperature on alpha-amylase activity in a starch matrix. Carbohydrate Polymers, 157, 1531–1537.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.-H., Aull, J. L., & Bell, L. N. (1999a). Invertase storage stability and sucrose hydrolysis in solids as affected by water activity and glass transition. Journal of Agricultural and Food Chemistry, 47(2), 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.-H., Aull, J. L., & Bell, L. N. (1999b). Solid-state tyrosinase stability as affected by water activity and glass transition. Food Research International, 32(7), 467–472.

    Article  CAS  Google Scholar 

  • Chirife, J., del Pilar Buera, M., & Labuza, T. P. (1996). Water activity, water glass dynamics, and the control of microbiological growth in foods. Critical Reviews in Food Science and Nutrition, 36(5), 465–513.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H.-J., & Lim, S.-T. (2003). Physical aging of glassy normal and waxy rice starches: Effect of aging temperature on glass transition and enthalpy relaxation. Carbohydrate Polymers, 53(2), 205–211.

    Article  CAS  Google Scholar 

  • Chung, H. J., & Lim, S. T. (2006). Physical aging of amorphous starches (a review). Starch-Stärke, 58(12), 599–610.

    Article  CAS  Google Scholar 

  • Chung, H. J., Yoo, B., & Lim, S. T. (2005). Effects of physical aging on thermal and mechanical properties of glassy normal corn starch. Starch-Stärke, 57(8), 354–362.

    Article  CAS  Google Scholar 

  • Cook, K., & Hartel, R. (2010). Mechanisms of ice crystallization in ice cream production. Comprehensive Reviews in Food Science and Food Safety, 9(2), 213–222.

    Article  Google Scholar 

  • Denisov, V. P., Halle, B., Peters, J., & Hoerlein, H. D. (1995). Residence times of the buried water molecules in bovine pancreatic trypsin inhibitor and its G36S mutant. Biochemistry, 34(28), 9046–9051.

    Article  CAS  PubMed  Google Scholar 

  • Donhowe, D. P., & Hartel, R. W. (1996a). Recrystallization of ice during bulk storage of ice cream. International Dairy Journal, 6(11–12), 1209–1221.

    Article  Google Scholar 

  • Donhowe, D. P., & Hartel, R. W. (1996b). Recrystallization of ice in ice cream during controlled accelerated storage. International Dairy Journal, 6(11–12), 1191–1208.

    Article  Google Scholar 

  • Downton, G. E., Flores-Luna, J. L., & King, C. J. (1982). Mechanism of stickiness in hygroscopic, amorphous powders. Industrial and Engineering Chemistry Fundamentals, 21(4), 447–451.

    Article  CAS  Google Scholar 

  • Dupas-Langlet, M., Meunier, V., Pouzot, M., & Ubbink, J. (2019). Influence of blend ratio and water content on the rheology and fragility of maltopolymer/maltose blends. Carbohydrate Polymers, 213, 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Fäldt, P., & Bergenståhl, B. (1994). The surface composition of spray-dried protein—Lactose powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 90(2–3), 183–190.

    Article  Google Scholar 

  • Fan, F., & Roos, Y. H. (2017). Structural strength and crystallization of amorphous lactose in food model solids at various water activities. Innovative Food Science & Emerging Technologies, 40, 27–34.

    Article  CAS  Google Scholar 

  • Farhat, I. (2004). Measuring and modelling the glass transition temperature. In Understanding and measuring the shelf-life of food (pp. 218–232). Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • Fenelon, M. A., Murphy, E. G., Martins, E., Lopes Fialho, T., Schuck, P., Fernandes de Carvalho, A., Stephani, R., et al. (2020). Innovations and prospects. In Drying in the dairy industry (pp. 201–260). CRC Press.

    Google Scholar 

  • Fennema, O. (1985). Food chemistry (2nd ed.). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Foster, K. D., Bronlund, J. E., & Paterson, A. T. (2006). Glass transition related cohesion of amorphous sugar powders. Journal of Food Engineering, 77(4), 997–1006.

    Article  CAS  Google Scholar 

  • Franks, F. (1985). Complex aqueous systems at subzero temperatures. In Properties of water in foods (pp. 497–509). New York: Springer.

    Google Scholar 

  • Gurtler, J. B., & Beuchat, L. R. (2007). Survival of Enterobacter sakazakii in powdered infant formula as affected by composition, water activity, and temperature. Journal of Food Protection, 70(7), 1579–1586.

    Article  PubMed  Google Scholar 

  • Haastrup, M. K., Johansen, P., Malskær, A. H., Castro-Mejía, J. L., Kot, W., Krych, L., Arneborg, N., & Jespersen, L. (2018). Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. International Journal of Food Microbiology, 285, 173–187.

    Article  CAS  PubMed  Google Scholar 

  • Halle, B. (2004). Protein hydration dynamics in solution: A critical survey. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1448), 1207–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halle, B., Andersson, T., Forsen, S., Lindman, B., & Lindman, B. (1981). Protein hydration from water oxygen-magnetic relaxation. Journal of the American Chemical Society, 103(3), 500–508.

    Article  CAS  Google Scholar 

  • Haque, M., & Roos, Y. (2004). Water sorption and plasticization behavior of spray-dried lactose/protein mixtures. Journal of Food Science, 69(8), E384–E391.

    Article  CAS  Google Scholar 

  • Haque, M. K., Kawai, K., & Suzuki, T. (2006). Glass transition and enthalpy relaxation of amorphous lactose glass. Carbohydrate Research, 341(11), 1884–1889.

    Article  CAS  PubMed  Google Scholar 

  • Hartel, R. W. (1998). Mechanisms and kinetics of recrystallization in ice cream. In The properties of water in foods ISOPOW 6 (pp. 287–319). New York: Springer.

    Google Scholar 

  • Hennigs, C., Kockel, T., & Langrish, T. (2001). New measurements of the sticky behavior of skim milk powder. Drying Technology, 19(3–4), 471–484.

    Article  CAS  Google Scholar 

  • Hickey, C. D., Sheehan, J. J., Wilkinson, M. G., & Auty, M. A. (2015). Growth and location of bacterial colonies within dairy foods using microscopy techniques: A review. Frontiers in Microbiology, 6, 99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hills, B. (1999). A multistate theory of water relations in biopolymer systems. In Advances in magnetic resonance in food science (pp. 45–62). Amsterdam: Elsevier Science.

    Google Scholar 

  • Hills, B., Takacs, S., & Belton, P. S. (1990). A new interpretation of proton NMR relaxation time measurements of water in food. Food Chemistry, 37(2), 95–111.

    Article  CAS  Google Scholar 

  • Hills, B., Manning, C., Ridge, Y., & Brocklehurst, T. (1996). NMR water relaxation, water activity and bacterial survival in porous media. Journal of the Science of Food and Agriculture, 71(2), 185–194.

    Article  CAS  Google Scholar 

  • Hinrichs, R., Götz, J., & Weisser, H. (2003). Water-holding capacity and structure of hydrocolloid-gels, WPC-gels and yogurts characterised by means of NMR. Food Chemistry, 82(1), 155–160.

    Article  CAS  Google Scholar 

  • Hinrichs, R., Götz, J., Noll, M., Wolfschoon, A., Eibel, H., & Weisser, H. (2004). Characterisation of different treated whey protein concentrates by means of low-resolution nuclear magnetic resonance. International Dairy Journal, 14(9), 817–827.

    Article  CAS  Google Scholar 

  • Hogan, S., & O’Callaghan, D. (2010). Influence of milk proteins on the development of lactose-induced stickiness in dairy powders. International Dairy Journal, 20(3), 212–221.

    Article  CAS  Google Scholar 

  • Hogan, S., & O’Callaghan, D. (2013). Moisture sorption and stickiness behaviour of hydrolysed whey protein/lactose powders. Dairy Science & Technology, 93(4–5), 505–521.

    Article  CAS  Google Scholar 

  • Hogan, S., O’Callaghan, D., & Bloore, C. (2009). Application of fluidised bed stickiness apparatus to dairy powder production. Milchwissenschaft, 64(3), 308.

    CAS  Google Scholar 

  • Hogan, S., Famelart, M.-H., O’Callaghan, D., & Schuck, P. (2010). A novel technique for determining glass–rubber transition in dairy powders. Journal of Food Engineering, 99(1), 76–82.

    Article  CAS  Google Scholar 

  • Holland, B., Welch, A., Unwin, I., Buss, D., Paul, A., & Southgate, D. (1991). McCance and Widdowson’s the composition of foods. London: Royal Society of Chemistry.

    Google Scholar 

  • Huppertz, T., & Gazi, I. (2016). Lactose in dairy ingredients: Effect on processing and storage stability. Journal of Dairy Science, 99(8), 6842–6851.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias, H., & Chirife, J. (1976). Isosteric heats of water vapour sorption on dehydrated foosa. II. Hysteresis and heat of sorption comparison with BET theory. Lebensmittel-Wissenschaft und Technologie, 9, 123–127.

    Google Scholar 

  • Jouppila, K., & Roos, Y. (1994a). Glass transitions and crystallization in milk powders. Journal of Dairy Science, 77(10), 2907–2915.

    Article  CAS  Google Scholar 

  • Jouppila, K., & Roos, Y. (1994b). Water sorption and time-dependent phenomena of milk powders. Journal of Dairy Science, 77(7), 1798–1808.

    Article  Google Scholar 

  • Karel, M. (1980). Lipid oxidation, secondary reactions, and water activity of foods. In Autoxidation in food and biological systems (pp. 191–206). New York: Springer.

    Google Scholar 

  • Karel, M., & Saguy, I. (1991). Effects of water on diffusion in food systems. Advances in Experimental Medicine and Biology, 302, 157–173.

    Article  CAS  PubMed  Google Scholar 

  • Karmas, R., Pilar Buera, M., & Karel, M. (1992). Effect of glass transition on rates of nonenzymic browning in food systems. Journal of Agricultural and Food Chemistry, 40(5), 873–879.

    Article  CAS  Google Scholar 

  • Kasapis, S. (2001). Advanced topics in the application of the WLF/free volume theory to high sugar/biopolymer mixtures: A review. Food Hydrocolloids, 15(4–6), 631–641.

    Article  CAS  Google Scholar 

  • Kasapis, S., Sablani, S. S., & Biliaderis, C. G. (2000). Dynamic oscillation measurements of starch networks at temperatures above 100 C. Carbohydrate Research, 329(1), 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, G. M., O’Mahony, J. A., Kelly, A. L., & O’Callaghan, D. J. (2016). Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula. Journal of Dairy Science, 99(9), 6961–6972.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. H.-J., Chen, X. D., & Pearce, D. (2009). Surface composition of industrial spray-dried milk powders. 1. Development of surface composition during manufacture. Journal of Food Engineering, 94(2), 163–168.

    Article  CAS  Google Scholar 

  • Labrousse, S., Roos, Y., & Karel, M. (1992). Collapse and crystallization in amorphous matrices with encapsulated compounds. Sciences des Aliments, 12(4), 757–769.

    CAS  Google Scholar 

  • Labuza, T. P., & Altunakar, B. (2007). Water activity prediction and moisture sorption isotherms. In Water activity in foods: Fundamentals and applications (Vol. 1, pp. 109–154). Hoboken, NJ: Wiley.

    Google Scholar 

  • Labuza, T. P., & Saltmarch, M. (1981). The nonenzymatic browning reaction as affected by water in foods. In Water activity: Influences on food quality (pp. 605–650).

    Google Scholar 

  • Labuza, T., McNally, L., Gallagher, D., Hawkes, J., & Hurtado, F. (1972). Stability of intermediate moisture foods. 1. Lipid oxidation. Journal of Food Science, 37(1), 154–159.

    Article  CAS  Google Scholar 

  • Laligant, A., Famelart, M.-H., Paquet, D., & Brulé, G. (2003). Fermentation by lactic bacteria at two temperatures of pre-heated reconstituted milk. II-dynamic approach of the gel construction. Le Lait, 83(4), 307–320.

    Article  CAS  Google Scholar 

  • LeMeste, M., Champion, D., Roudaut, G., Blond, G., & Simatos, D. (2002). Glass transition and food technology: A critical appraisal. Journal of Food Science, 67(7), 2444–2458.

    Article  CAS  Google Scholar 

  • Levine, H., & Slade, L. (1988). Principles of “cryostabilization” technology from structure/property relationships of carbohydrate/water systems—A review. Cryo-Letters, 9(1), 21–63.

    CAS  Google Scholar 

  • Levine, H., & Slade, L. (1989). A food polymer science approach to the practice of cryostabilization technology. Comments on Agricultural and Food Chemistry, 1(6), 315–396.

    CAS  Google Scholar 

  • Lin, S. X., Chen, X. D., & Pearce, D. L. (2005). Desorption isotherm of milk powders at elevated temperatures and over a wide range of relative humidity. Journal of Food Engineering, 68(2), 257–264.

    Article  Google Scholar 

  • Liu, Y., Bhandari, B., & Zhou, W. (2006). Glass transition and enthalpy relaxation of amorphous food saccharides: A review. Journal of Agricultural and Food Chemistry, 54(16), 5701–5717.

    Article  CAS  PubMed  Google Scholar 

  • Ludl, A.-A., Bove, L., Saitta, A., Salanne, M., Hansen, T., Bull, C., Gaal, R., & Klotz, S. (2015). Structural characterization of eutectic aqueous NaCl solutions under variable temperature and pressure conditions. Physical Chemistry Chemical Physics, 17(21), 14054–14063.

    Article  CAS  PubMed  Google Scholar 

  • Luyet, B., & Rasmussen, D. (1967). Study by differential thermal analysis of the temperatures of instability in rapidly cooled solutions of polyvinylpyrrolidone. Biodynamica, 10(205), 137–147.

    CAS  PubMed  Google Scholar 

  • Maher, A. D., & Rochfort, S. J. (2014). Applications of NMR in dairy research. Meta, 4(1), 131–141.

    Google Scholar 

  • Maidannyk, V., & Roos, Y. H. (2018). Structural strength analysis of partially crystalline trehalose. LWT, 88, 9–17.

    Article  CAS  Google Scholar 

  • Marcus, Y. (2010). Effect of ions on the structure of water. Pure and Applied Chemistry, 82(10), 1889–1899.

    Article  CAS  Google Scholar 

  • Mariette, F. (2008). NMR relaxation of dairy products. In Modern magnetic resonance (pp. 1697–1701). New York: Springer.

    Google Scholar 

  • Mariette, F., Tellier, C., Brule, G., & Marchal, P. (1993). Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. The Journal of Dairy Research, 60(2), 175–188.

    Article  Google Scholar 

  • Mariette, F., Topgaard, D., Jönsson, B., & Soderman, O. (2002). 1H NMR diffusometry study of water in casein dispersions and gels. Journal of Agricultural and Food Chemistry, 50(15), 4295–4302.

    Article  CAS  PubMed  Google Scholar 

  • Masum, A., Chandrapala, J., Huppertz, T., Adhikari, B., & Zisu, B. (2020). Influence of drying temperatures and storage parameters on the physicochemical properties of spray-dried infant milk formula powders. International Dairy Journal, 105, 104696.

    Article  CAS  Google Scholar 

  • Mattea, C., Qvist, J., & Halle, B. (2008). Dynamics at the protein-water interface from 17O spin relaxation in deeply supercooled solutions. Biophysical Journal, 95(6), 2951–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, S., & Roos, Y. (2004a). Comparison of nonenzymatic browning kinetics in spray-dried and freeze-dried carbohydrate-based food model systems. Journal of Food Science, 69(7), 322–331.

    Article  Google Scholar 

  • Miao, S., & Roos, Y. H. (2004b). Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying. Journal of Agricultural and Food Chemistry, 52(16), 5250–5257.

    Article  CAS  PubMed  Google Scholar 

  • Mounsey, J., Hogan, S., Murray, B., & O’Callaghan, D. (2012). Effects of hydrolysis on solid-state relaxation and stickiness behavior of sodium caseinate-lactose powders. Journal of Dairy Science, 95(5), 2270–2281.

    Article  CAS  PubMed  Google Scholar 

  • Murti, R. (2006). The effect of lactose source on the stickiness of dairy powders (pp. 2–21). ME thesis, Massey University, Palmerston North, New Zealand.

    Google Scholar 

  • Nelson, K. A., & Labuza, T. P. (1992). Relationship between water and lipid oxidation rates: Water activity and glass transition theory. In Lipid oxidation in food (pp. 93–103). Washington, DC: ACS Publications.

    Google Scholar 

  • Netto, F., Desobry, S., & Labuza, T. (1998). Effect of water content on the glass transition, caking and stickiness of protein hydrolysates. International Journal of Food Properties, 1(2), 141–161.

    Article  CAS  Google Scholar 

  • O’Donoghue, L. T. (2019). Compositional and analytical factors affecting the stickiness of dairy powders. MSc Thesis, University College Cork.

    Google Scholar 

  • O’Donoghue, L. T., Haque, M. K., Kennedy, D., Laffir, F. R., Hogan, S. A., O’Mahony, J. A., & Murphy, E. G. (2019). Influence of particle size on the physicochemical properties and stickiness of dairy powders. International Dairy Journal, 98, 54–63.

    Article  Google Scholar 

  • O’Donoghue, L. T., Haque, M., Hogan, S. A., Laffir, F. R., O’Mahony, J. A., & Murphy, E. G. (2020). Dynamic mechanical analysis as a complementary technique for stickiness determination in model whey protein powders. Foods, 9(9), 1295.

    Article  PubMed Central  Google Scholar 

  • Özkan, N., Walisinghe, N., & Chen, X. D. (2002). Characterization of stickiness and cake formation in whole and skim milk powders. Journal of Food Engineering, 55(4), 293–303.

    Article  Google Scholar 

  • Ozmen, L., & Langrish, T. (2002). Comparison of glass transition temperature and sticky point temperature for skim milk powder. Drying Technology, 20(6), 1177–1192.

    Article  CAS  Google Scholar 

  • Paterson, A., Brooks, G., Bronlund, J., & Foster, K. (2005). Development of stickiness in amorphous lactose at constant T−Tg levels. International Dairy Journal, 15(5), 513–519.

    Article  CAS  Google Scholar 

  • Paterson, A. H., Bronlund, J. E., Zuo, J. Y., & Chatterjee, R. (2007). Analysis of particle-gun-derived dairy powder stickiness curves. International Dairy Journal, 17(7), 860–865.

    Article  Google Scholar 

  • Peleg, M. (1993). Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms 1. Journal of Food Process Engineering, 16(1), 21–37.

    Article  Google Scholar 

  • Rahman, M. S. (2010). Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. Journal of Food Engineering, 99(4), 402–416.

    Article  Google Scholar 

  • Roos, Y. (1991). Nonequilibrium ice formation in carbohydrate solutions. Cryo-Letters, 12, 367–376.

    CAS  Google Scholar 

  • Roos, Y. (1997). Water in milk products. In Advanced dairy chemistry (Vol. 3, pp. 303–346). New York: Springer.

    Google Scholar 

  • Ruan, R., & Chen, P. (1998). Water in food and biological materials. A nuclear magnetic resonance approach. Lancaster, PA: Technomic Publishing.

    Google Scholar 

  • Ruan, R. R., Long, Z., Song, A., & Chen, P. L. (1998). Determination of the glass transition temperature of food polymers using low field NMR. LWT - Food Science and Technology, 31(6), 516–521.

    Article  CAS  Google Scholar 

  • Schmidt, S. J. (2007). Water mobility in foods. In Water activity in foods: Fundamentals and applications (pp. 61–122). Hoboken, NJ: Wiley.

    Google Scholar 

  • Schuck, P., Dolivet, A., Méjean, S., Zhu, P., Blanchard, E., & Jeantet, R. (2009). Drying by desorption: A tool to determine spray drying parameters. Journal of Food Engineering, 94(2), 199–204.

    Article  Google Scholar 

  • Singh, K. J., & Roos, Y. H. (2007). Frozen state transitions in freeze-concentrated lactose-protein-cornstarch systems. International Journal of Food Properties, 10(3), 577–587.

    Article  CAS  Google Scholar 

  • Slade, L., Levine, H., & Reid, D. S. (1991). Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30(2–3), 115–360.

    Article  CAS  PubMed  Google Scholar 

  • Smart, J. (1988). Effect of whey components on the rate of crystallization and solubility of α-lactose monohydrate. New Zealand Journal of Dairy Science and Technology, 23(4), 275–289.

    CAS  Google Scholar 

  • Smart, J. B., & Smith, J. M. (1992). Effect of selected compounds on the rate of α-lactose monohydrate crystallization, crystal yield and quality. International Dairy Journal, 2(1), 41–53.

    Article  CAS  Google Scholar 

  • Tellier, C., Mariette, F., Guillement, J. P., & Marchal, P. (1993). Evolution of water proton nuclear magnetic relaxation during milk coagulation and syneresis: Structural implications. Journal of Agricultural and Food Chemistry, 41(12), 2259–2266.

    Article  CAS  Google Scholar 

  • Timlin, M., Tobin, J. T., Brodkorb, A., Murphy, E. G., Dillon, P., Hennessy, D., O’Donovan, M., Pierce, K. M., & O’Callaghan, T. F. (2021). The impact of seasonality in pasture-based production systems on milk composition and functionality. Foods, 10(3), 607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmermann, E. O., & Chirife, J. (1991). The physical state of water sorbed at high activities in starch in terms of the GAB sorption equation. Journal of Food Engineering, 13(3), 171–179.

    Article  Google Scholar 

  • Ubbink, J., & Dupas-Langlet, M. (2020). Rheology of carbohydrate blends close to the glass transition: Temperature and water content dependence of the viscosity in relation to fragility and strength. Food Research International, 138, 109801.

    Article  CAS  PubMed  Google Scholar 

  • Van Boekel, M. (1998). Effect of heating on Maillard reactions in milk. Food Chemistry, 62(4), 403–414.

    Article  Google Scholar 

  • van den Berg, C. (1984). Desorption of water activity of foods for engineering purposes by means of the GAB model of sorption. In M. BM (Ed.), Engineering and foods (pp. 311–321). Amsterdam: Elsevier.

    Google Scholar 

  • Van Den Dries, I. J., Besseling, N. A., Van Dusschoten, D., Hemminga, M. A., & Van Der Linden, E. (2000). Relation between a transition in molecular mobility and collapse phenomena in glucose−water systems. The Journal of Physical Chemistry B, 104(39), 9260–9266.

    Article  Google Scholar 

  • Viollaz, P. E., & Rovedo, C. O. (1999). Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. Journal of Food Engineering, 40(4), 287–292.

    Article  Google Scholar 

  • Vuataz, G. (1988). Preservation of skim-milk powders: Role of water activity and temperature in lactose crystallization and lysine loss. In Food preservation by water activity control (pp. 73–101). Amsterdam: Elsevier.

    Google Scholar 

  • Vuataz, G. (2002). The phase diagram of milk: A new tool for optimising the drying process. Le Lait, 82(4), 485–500.

    Article  CAS  Google Scholar 

  • Weast, R. C. (1986). Handbook of physics and chemistry (pp. 1983–1984). Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, E. (2022). Water in Dairy Products. In: McSweeney, P.L.H., O'Mahony, J.A., Kelly, A.L. (eds) Advanced Dairy Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-92585-7_11

Download citation

Publish with us

Policies and ethics