Skip to main content

Research and Test of the Self-designed and Manufactured Rotary Friction Welding Machine with CT3 Steel Samples

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 366))

Included in the following conference series:

Abstract

This paper presents the results of research and test of the self-designed and manufactured rotary friction welding machine. Tensile test results show that the tensile strength of the material after welding is satisfactory according to the standards of the material; the elongation is within the elongation limit of the welding specimen; the yield limit is greater than the minimum yield limit of the material. The parameters of the welding equipment are guaranteed according to the design requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sardana, G., Lohan, A.: Friction welding on lathe machine with special fixture. Int. J. Innov. Eng. Technol. 2(3), 258–261 (2013)

    Google Scholar 

  2. Singh, J., Singh, K.: Fabrication of friction welding on centre lathe: a case study. Int. J. Res. Mech. Eng. Technol. 4(2), 145–147 (2014)

    Google Scholar 

  3. Thakare, P.A., Randheer Singh, L.: Design and development of micro friction welding machine and investigation of welding parameters for similar materials. Int. J. Sci. Eng. Res. 5(6), 1379 (2014)

    Google Scholar 

  4. Ahmet, C.A.N., Baxter, G.J., Preuss, M., Withers, P.J.: Research on the inertia friction welding of nickel base superalloys for aerospace applications studied by G.J. Baxter, M. Preuss and P.J. Withers. Manchester Institute of Natural Materials Research, UK

    Google Scholar 

  5. Uday, M.B., Ahmad Fauzi, M.N., Zuhailawati, H., Ismail, A.B.: Effect of welding speed on mechanical strength of friction welded joint of YSZ-Alumina composite and 6061 Aluminum Alloy. Mater. Sci. Eng. A 528, 4753–4760 (2011)

    Article  Google Scholar 

  6. Shiva Shankar, P., Suresh Kumar, L., Ravinder Reddy, N.: Experimental investigation and statistical analysis of the friction welding parameters for the copper alloy - Cu Zn28 using Taguchi method. Int. J. Res. Eng. Technol. eISSN: 2319–1163 pISSN: 2321–7308

    Google Scholar 

  7. Algur, V., Kabadi, V.R., Ganechari, S.M., Sharanabasappa, M.: Experimental investigation on friction characteristics of modified ZA-27 alloy using Taguchi technique. Int. J. Mech. Eng. Rob. Res. 3(4), 24 (2014)

    Google Scholar 

  8. Handa, A., Chawla, V.: Experimental study of mechanical properties of friction welded AISI 1021 steels. Sadhana 38(6), 1407–1419 (2013)

    Article  Google Scholar 

  9. Kurt, A., Uygur, I., Paylasan, U.: Effect of friction welding parameters on mechanical and microstructural properties of dissimilar AISI 1010-ASTM B22 joints. Welding J. 90(5), 102s–106s (2011)

    Google Scholar 

  10. Shiva Shankar, P., Suresh Kumar, L., Ravinder Reddy, N.: Experimental investigation and statistical analysis of the friction welding parameters for the copper alloy – Cu Zn28 using Taguchi method. Int. J. Res. Eng. Technol. eISSN: 2319–1163 | pISSN: 2321–7308

    Google Scholar 

  11. Sathiya, P., Aravindan, S., Noorulhaq, A., Panneerselvam, K.: Optimization of friction welding parameters using simulated annealing. Ind. J. Eng. Mater. Sci. 13, 37–44 (2006)

    Google Scholar 

  12. Khany, S.E., Krishnan, K.N., Abdul Wahed, M.: Study of transient temperature distribution in a friction welding process and its effects on its joints. Int. J. Comput. Eng. Res. 2(5), 1645 (2012)

    Google Scholar 

  13. Rashmikant Pandya, P., Bagesar, A., Patel, J.: Effect of welding parameters on burn-off length for friction welding of Inconel 718 and SS 304 for production of bimetal poppet exhaust valve. Int. J. Sci. Res. Dev. 2(4), 1 (2014)

    Google Scholar 

  14. Lindemann, Z.Z., Skalski, K., WÅ‚osinski, W., Zimmerman, J.: Thermo-mechanical phenomena in the process of friction welding of corundum ceramics and aluminium. Bull. Polish Acad. Sci. Tech. Sci. 54(1), 1 (2006)

    Google Scholar 

  15. Alves, E.P., An, C.Y., Neto, F.P., dos Ferro Santos, E.: Experimental Determination of Temperature During Rotary Friction Welding of Dissimilar Materials. Science and Engineering Publishing Company (2012)

    Google Scholar 

  16. Moarrefzadeh, A.: Study of heat affected zone (HAZ) in friction welding process. J. Mech. Eng. 1(1), 11 (2012)

    Google Scholar 

  17. Ruma, Abdul Wahed, M., Farhan, M.: A study on the effect of external heating of the friction welded joint. Int. J. Emerg. Technol. Adv. Eng. 3(5), 603 (2013)

    Google Scholar 

  18. Gill, J., Singh, J.: Experimental study on the effect of heating time on mechanical properties of nylon-6 joints produced by friction welding. Int. J. Adv. Eng. Res. Stud. E-ISSN 2249–8974

    Google Scholar 

  19. Can, A., Şahin, M., Küçük, M.: Modelling of friction welding. In: International Scientific Conference, 19–20 November 2010, Gabrovo

    Google Scholar 

  20. Sasidharan, B., Narayanan, K.P., Arivazhakan, R.: Influence of interface surface geometries in the tensile characteristics of friction welded joints from aluminium alloys. In: International Journal of Innovative Research in Science, Engineering and Technology. An ISO 3297:2007 Certified Organization, December 2013, vol. 2, no. 1 (2013)

    Google Scholar 

  21. Alves, E.P., An, C.Y., Neto, F.P., dos Santos, E.F.: Experimental determination of temperature during rotary friction welding of dissimilar materials. Front. Aerosp. Eng. 1(1), 20 (2012)

    Google Scholar 

  22. Gill, J., Singh, J.: Experimental study on the effect of heating

    Google Scholar 

  23. Time on mechanical properties of nylon-6 joints produced by friction welding. Int. J. Adv. Eng. Res. Stud. E-ISSN2249–8974

    Google Scholar 

  24. Alves, E.P., Neto, F.P., An, C.Y., da Silva, E.C.: Experimental determination of temperature during rotary friction welding of AA1050 aluminum with AISI 304. Stainless Steel 4(1), 61–67 (2012)

    Google Scholar 

  25. Ochi, H., Ogawa, K.: Friction welding of aluminum alloy and steel. Int. J. Offshore Polar Eng. 8(2) (1998)

    Google Scholar 

  26. Şahin, M.: Friction welding of different materials. In: International Scientific Conference 19–20 November 2010, Gabrovo

    Google Scholar 

  27. Rombaut, P., De Waele, W., Faes, K.: Friction welding of steel to ceramic. Sustain. Construct. Design (2011)

    Google Scholar 

  28. Ananthapadmanaban, D.: Piaar Nagar, Chennai–119, Studies on Friction Weldability of Low Carbon Steel with Stainless Steel and Aluminium with Copper

    Google Scholar 

  29. Sahin, M., Misirli, C.: Mechanical and Metalurgical Properties of Friction Welded Aluminium Joints, 24 trang

    Google Scholar 

  30. Yuai, S., Yaoui, L., Zhu Xianong, Y., Siong, Z.: Strength distribution at interface of rotaryrictionelded aluminum to nodular cast iron. Trans. Nonferr. Metals Soc. China 18, 14–18 (2008)

    Article  Google Scholar 

  31. Boonseng, K., Chainarong, S., Meengam, C.: Microstructure and mechanical properties of friction welding in SSM356 aluminium alloys. Int. J. Emerg. Trends Eng. Res. 2(4) (2014)

    Google Scholar 

  32. Rajamani, G.P., Shunmuga, M.S., Rao, K.P.: Parameter optimization and properties of friction welded quenched and tempered steel. Weld. Res. Suppl. 226-S (1992)

    Google Scholar 

  33. Gavade, J.P., Rajopadhye, R.D., Jadhav, N.D., Ramdasi, P.: A review on effects of processing parameters on mechanical behavior of different metals joined by continuous drive friction welding. IJESR 3(4) (2013). 2777–2784, ISSN 2277–2685

    Google Scholar 

  34. Handa, A., Chawla, V.: Friction Welding - A Review. 1(2), 34–38 (2014). http://asianonlinejournals.com/index.php/Mare

  35. Moarrefzadeh, A.: Numerical modeling of friction welding process. Int. J. Multidiscip. Sci. Eng. 2(8) (2011)

    Google Scholar 

  36. Narasimha Murthy, K., Raghupathy, V.P., Sethuram, D.: Two day workshop on friction welding & friction stir welding. In: International Center for Advancement of Manufacturing Technology, 24–25 November 2011 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Hong Ky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hung, T.V., Van Ranh, T., Van Nga, T.T., Ky, L.H. (2022). Research and Test of the Self-designed and Manufactured Rotary Friction Welding Machine with CT3 Steel Samples. In: Nguyen, D.C., Vu, N.P., Long, B.T., Puta, H., Sattler, KU. (eds) Advances in Engineering Research and Application. ICERA 2021. Lecture Notes in Networks and Systems, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-030-92574-1_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92574-1_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92573-4

  • Online ISBN: 978-3-030-92574-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics