Skip to main content

Assessing the Future Resource and Environmental Impacts of China's Aluminum Industry: Implications of Import and Export Transition

  • Conference paper
  • First Online:
REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2227 Accesses

Abstract

Aluminum is widely used in buildings, transportation, and home appliances. However, primary aluminum production is a resource-, energy-, and emission-intensive industrial process. At present, China is the world's largest producer of aluminum. Under China’s new national development pattern of the “internal–external dual cycle”, China’s aluminum industry (AID) future development may also need to be adjusted. This study combines material flow analysis, life cycle assessment and scenario analysis to investigate the potential of resource conservation, energy saving, and emission reduction for China's AID till 2030 under the transition of import and export trade. The results show that nearly 40% of China’s annual aluminum production entered the inventory in use in other parts of the world through trade between 2010 and 2017. In the business as usual (BAU) scenario, the bauxite consumption of China's AID will increase from 170 Tg in 2017 to 291 Tg in 2030, with an annual growth rate of 4.2%. Compared with the BAU scenario, the demand for bauxite in the two scenarios of reducing exports of aluminum products will be reduced by 27% (Scenarios A) and 47% (Scenarios B) in 2030, respectively. In addition, there are obvious benefits in terms of water saving, energy saving, and emission reduction under Scenarios A and Scenarios B. Therefore, promoting the transformation of imports and exports can effectively decrease the external dependence on bauxite of China's AID and is also an important means to achieve carbon peaking by 2030.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cullen JM, Allwood JM (2013) Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ Sci Technol 47(7):3057–3064

    Article  Google Scholar 

  2. Liu G, Bangs CE, Müller DB (2013) Stock dynamics and emission pathways of the global aluminium cycle. Nat Clim Chang 3(4):338–342

    Article  Google Scholar 

  3. Liu G, Müller DB (2013) Centennial evolution of aluminum in-use stocks on our aluminized planet. Environ Sci Technol 47(9):4882–4888

    Article  Google Scholar 

  4. Maung KN, Yoshida T, Liu G et al (2017) Hashimoto S. Assessment of secondary aluminum reserves of nations. Resour Conserv Recycl 126:34–41

    Article  Google Scholar 

  5. Liu G, Bangs C, Müller DB (2011) Unearthing potentials for decarbonizing the U.S. aluminum cycle. Environ Sci Technol 45(22):9515–22

    Google Scholar 

  6. Chen WQ (2018) Dynamic product-level analysis of in-use aluminum stocks in the United States. J Ind Ecol 22(6):1425–1435

    Article  Google Scholar 

  7. Buchner H, Laner D, Rechberger H et al (2015) Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria. Environ Sci Technol 49(9):5546–5554

    Article  Google Scholar 

  8. Buchner H, Laner D, Rechberger H et al (2014) In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency. Resour Conserv Recycl 93:112–123

    Article  Google Scholar 

  9. Ciacci L, Chen W, Passarini F et al (2013) Historical evolution of anthropogenic aluminum stocks and flows in Italy. Resour Conserv Recycl 72:1–8

    Article  Google Scholar 

  10. Dai M, Wang P, Chen W et al (2019) Scenario analysis of China’s aluminum cycle reveals the coming scrap age and the end of primary aluminum boom. J Clean Prod 226:793–804

    Article  Google Scholar 

  11. Ding N, Yang J, Liu J (2016) Substance flow analysis of aluminum industry in mainland China. J Clean Prod 133:1167–1180

    Article  Google Scholar 

  12. Yue Q, Wang H, Lu Z et al (2014) Analysis of anthropogenic aluminum cycle in China. Trans Nonferrous Met Soc China 24(4):1134–1144

    Article  Google Scholar 

  13. Yue Q, Wang H, Lu Z (2012) Quantitative estimation of social stock for metals Al and Cu in China. Trans Nonferrous Met Soc China 22(7):1744–1752

    Article  Google Scholar 

  14. Chen W, Shi L (2012) Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: exploring the dynamics driving the rapid increase in China’s aluminum production. Resour Conserv Recycl 65:18–28

    Article  Google Scholar 

  15. Wang J, Graedel T (2010) Aluminum in-use stocks in China: a bottom-up study. J Mater Cycles Waste Manag 12(1):66–82

    Article  Google Scholar 

  16. Chen W, Shi L, Qian Y (2010) Substance flow analysis of aluminum in mainland China for 2001, 2004 and 2007: exploring its initial sources, eventual sinks and the pathways linking them. Resour Conserv Recycl 54(9):557–570

    Article  Google Scholar 

  17. Yang Y, Guo Y, Zhu W et al (2019) Environmental impact assessment of China’s primary aluminum based on life cycle assessment. Trans Nonferrous Met Soc China 29(8):1784–1792

    Article  Google Scholar 

  18. Farjana SH, Huda N, Mahmud M (2019) Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment. Sci Total Environ 663:958–970

    Article  Google Scholar 

  19. Zhang Y, Sun M, Hong J et al (2016) Environmental footprint of aluminum production in China. J Clean Prod 133:1242–1251

    Article  Google Scholar 

  20. Nunez P, Jones S (2016) Cradle to gate: life cycle impact of primary aluminum production. Int J Life Cycle Assess 21(11):1594–1604

    Article  Google Scholar 

  21. Guo Y, Yu Y, Ren H et al (2020) Scenario-based DEA assessment of energy-saving technological combinations in aluminum industry. J Clean Prod 260:121010

    Google Scholar 

  22. Li Q, Zhang W, Li H et al (2017) CO2 emission trends of China’s primary aluminum industry: a scenario analysis using system dynamics model. Energy Policy 105:225–235

    Article  Google Scholar 

  23. Liu Z, Geng Y, Adams M et al (2016) Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis. Appl Energy 166:253–263

    Article  Google Scholar 

  24. Hao H, Geng Y, Hang W (2016) GHG emissions from primary aluminum production in China: Regional disparity and policy implications. Appl Energy 166:264–272

    Article  Google Scholar 

  25. Zhang W, Li H, Chen B et al (2015) CO2 emission and mitigation potential estimations of China’s primary aluminum industry. J Clean Prod 103:863–872

    Article  Google Scholar 

  26. Elshkaki A, Lei S, Chen W (2020) Material-energy-water nexus: modelling the long term implications of aluminum demand and supply on global climate change up to 2050. Environ Res 181:108964

    Google Scholar 

  27. Li S, Zhang T, Niu L et al (2021) Analysis of the development scenarios and greenhouse gas (GHG) emissions in China’s aluminum industry till 2030. J Clean Prod 290:125859

    Google Scholar 

  28. International Aluminum Institute (2021) Global material flow model. http://www.world-aluminium.org/publications/. Accessed 4 May 2021

  29. National Bureau of Statistics of China (2021) China statistical yearbook. http://www.stats.gov.cn/tjsj./ndsj/. Accessed 13 May 2021

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51874078 and 51874094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Zhang, T. (2022). Assessing the Future Resource and Environmental Impacts of China's Aluminum Industry: Implications of Import and Export Transition. In: Lazou, A., Daehn, K., Fleuriault, C., Gökelma, M., Olivetti, E., Meskers, C. (eds) REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I). The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92563-5_41

Download citation

Publish with us

Policies and ethics