Skip to main content

Development of a Thermodynamic Model for Chromates, Molybdates, Tungstates, and Vanadates Involved in the Corrosion of Steels (Fe, Cr, Ni, Mo, W, and V) at High Temperatures in Atmospheres Containing O–H–S–C–Cl and Alkaline Salts

  • Conference paper
  • First Online:
REWAS 2022: Energy Technologies and CO2 Management (Volume II)

Abstract

This research work falls under the generic theme of modeling high-temperature processes, during energy conversion, flaking, and corrosion phenomenon, for systems converting mainly organic matter into energy. Energy conversion facilities are made of a metal alloy of the type Fe–Cr–Ni–V–Mo–W and are exposed to gaseous species from combustion, or from the flying of ashes. Under certain conditions, highly corrosive molten salts may be formed, causing the protective oxide layer of the steel to be transformed into either chromates, molybdates, tungstates or vanadates, or their mixture. This is called “catastrophic” corrosion. The presence of ash deposits limits the maximum operating temperature and the energy efficiency of the process. Thus, this research aims to develop a thermodynamic model including chromates, molybdates, tungstates, and vanadates that may form in environments containing O–H–S–C–Cl and alkaline salts, to predict the limiting conditions at which ash deposition and corrosion can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paneru M et al (2013) Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying SO2 concentrations in an oxy-fuel combustion atmosphere 27(10):5699–5705

    Google Scholar 

  2. Lehmusto J et al (2012) Studies on the partial reactions between potassium chloride and metallic chromium concerning corrosion at elevated temperatures. Oxid Met 77(3–4):129–148

    Google Scholar 

  3. Goebel J, Pettit F, Goward G (1973) Mechanisms for the hot corrosion of nickel-base alloys. Met Trans 4(1):261–278

    Google Scholar 

  4. Küpper J, Rapp R (1987) Oxidation/reduction reactions of molybdate ions in sodium sulfate at 1200 K. Mater Corros 38(11):674–682

    Google Scholar 

  5. Shinata Y (1987) Accelerated oxidation rate of chromium induced by sodium chloride. Oxid Met 27(5–6):315–332

    Google Scholar 

  6. Lindberg D et al (2006) Thermodynamic evaluation and optimization of the (Na+ K+ S) system. J Chem Thermodyn 38(7):900–915

    Article  Google Scholar 

  7. Hazi M (2006) Processus d’interaction corrosion/érosion/dépôt dans les enceintes de traitement thermique des déchets

    Google Scholar 

  8. Pettit F et al (1984) Oxidation and hot corrosion of superalloys. Superalloys 85:651–687

    Google Scholar 

  9. Otsuka N, Rapp RA (1990) Effects of chromate and vanadate anions on the hot corrosion of Preoxidized Ni by a thin fused Na2SO4 film at 900° C. J Electrochem Soc 137(1):53–60

    Article  Google Scholar 

  10. Eliaz N et al (2002) Hot corrosion in gas turbine components. Eng Fail Anal 9(1):31–43

    Article  Google Scholar 

  11. Stringer and Technology (1987) High-temperature corrosion of superalloys. Mater Sci Technol 3(7):482–493

    Article  Google Scholar 

  12. Antoni L, Galerie AJ (2003) Corrosion sèche des métaux. Cas industriels: dépôts, milieux fondus 10(M4227):M4227

    Google Scholar 

  13. François Armanet GB, Moulin G (2012) Corrosion par les gaz à haute température des métaux et alliages réfractaires. Technique de l'ingénieur, no COR378, pp 1–37

    Google Scholar 

  14. Huntz A-M, Pieraggi B (2003) Oxydation des matériaux métalliques: comportement à haute température, éd: Hermes-Lavoisier

    Google Scholar 

  15. Lacombe P, Dabosi F (1987) Les Ulis, Corrosion des Matériaux à Haute Température

    Google Scholar 

  16. Lindberg D (2007) Thermochemistry and melting properties of alkali salt mixtures in black liquor conversion processes. Åbo Akademi University

    Google Scholar 

  17. Remeau J-J, H Barthelemy and Techniques (1978) Quelques problèmes de corrosion dans la fabrication de la pâte à papier par le procédé kraft. Mater Techn 66(11–12):383–385

    Google Scholar 

  18. Lindberg D et al (2013) Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion—current situation and future developments. Fuel Process Technol 105:129–141

    Google Scholar 

  19. Pöyry J (1992) Reduction of atmospheric emissions from pulp industry, on behalf of Swedish EPA

    Google Scholar 

  20. Fryburg G, Kohl F, Stearns C (1984) Chemical reactions involved in the initiation of hot corrosion of IN‐738. J Electrochem Soc 131(12):2985–2997

    Google Scholar 

  21. Misra A (1986) Mechanism of Na2SO4‐induced corrosion of molybdenum containing nickel‐base superalloys at high temperatures I: corrosion in atmospheres containing only. J Electrochem Soc 133(5):1029–1038

    Google Scholar 

  22. Peters K, Whittle D, Stringer J (1976) Oxidation and hot corrosion of nickel-based alloys containing molybdenum. Corros Sci 16(11):791–804

    Google Scholar 

  23. Pelton AD et al (2000) The modified quasichemical model I—binary solutions. Metall Mater Trans B 31(4):651–659

    Google Scholar 

  24. Pelton AD, Chartrand P (2001) The modified quasi-chemical model: Part II. multicomponent solutions Metall Mater Trans A 32(6):1355–1360

    Google Scholar 

  25. Chartrand P, Pelton AD (2001) The modified quasi-chemical model: Part III. two sublattices Metall Mater Trans A 32(6):1397–1407

    Google Scholar 

  26. Pelton AD, Chartrand P, Eriksson G (2001) The modified quasi-chemical model: Part IV. two-sublattice quadruplet approximation Metall Mater Trans A 32(6):1409–1416

    Google Scholar 

  27. Hillert M, Jansson B, Sundman B (1988) Application of the compound-energy model to oxide systems/anwendung des compound-energy. Modells auf Oxidsysteme. Int J Mater Res 79(2):81–87

    Google Scholar 

  28. Sundman B, Ågren J (1981) A regular solution model for phases with several components and sublattices, suitable for computer applications. J Phys Chem Solids 42(4):297–301

    Google Scholar 

  29. Cacciamani G (2016) An introduction to the calphad method and the compound energy formalism (CEF). Technol Metal Mater Miner 13(1):16–24

    Google Scholar 

  30. Kumar KH, Wollants P (2001) Some guidelines for thermodynamic optimisation of phase diagrams. J Alloys Compd 320(2):189–198

    Google Scholar 

  31. Lindberg D, Backman R, Chartrand P (2007) Thermodynamic evaluation and optimization of the (Na2CO3+ Na2SO4+ Na2S+ K2CO3+ K2SO4+ K2S) system. J Chem Thermodyn 39(6):942–960

    Google Scholar 

  32. Goldberg A, et al (1973) Phase diagram and crystallography of the system Na2CrO4–K2CrO4. N Jb Miner Mh 241–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Benalia .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benalia, S., Robelin, C., Chartrand, P. (2022). Development of a Thermodynamic Model for Chromates, Molybdates, Tungstates, and Vanadates Involved in the Corrosion of Steels (Fe, Cr, Ni, Mo, W, and V) at High Temperatures in Atmospheres Containing O–H–S–C–Cl and Alkaline Salts. In: Tesfaye, F., et al. REWAS 2022: Energy Technologies and CO2 Management (Volume II). The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92559-8_1

Download citation

Publish with us

Policies and ethics