Skip to main content

Domino Problem for Pretty Low Complexity Subshifts

  • 205 Accesses

Part of the Emergence, Complexity and Computation book series (ECC,volume 42)

Abstract

Given a set P of allowed \(n\times m\) rectangular patterns of colors, a coloring of the grid \(\mathbb {Z}^2\) is called valid if every \(n\times m\) pattern in the coloring is in P. It is known that if the number of allowed \(n\times m\) patterns is at most nm and if there exists a valid coloring of \(\mathbb {Z}^2\) then there exists a valid periodic coloring, and consequently there is an algorithm to determine for given nm patterns if they admit any valid coloring. If the number of allowed patterns is higher the situation changes: We prove that for every \(\varepsilon >0\) it is undecidable for given dimensions nm and a given set of at most \((1+\varepsilon )nm\) patterns of size \(n\times m\) whether they admit any valid coloring. In other words, the upper bound nm is multiplicatively optimal for the number of allowed patterns that guarantees decidability and periodicity. The undecidability result that we prove is actually slightly better: it holds in the square case \(n=m\), and instead of bound \((1+\varepsilon )n^2\) we can use \(n^2+f(n)n\) for any computable function \(f:\mathbb {N}\longrightarrow \mathbb {N}\) that is not bounded above by a constant.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92551-2_19
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92551-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Berger R (1966) The undecidability of the domino problem. Memoirs of the American Mathematical Society. American Mathematical Society

    Google Scholar 

  2. Birkhoff GD (1912) Quelques théorèmes sur le mouvement des systèmes dynamiques. Bulletin de la Société Mathématique de France 40:305–323

    MathSciNet  CrossRef  Google Scholar 

  3. Cassaigne J (1999) Subword complexity and periodicity in two or more dimensions. In: Rozenberg G, Thomas W (eds) Developments in language theory, DLT 1999 proceedings. World Scientific, pp 14–21

    Google Scholar 

  4. Ceccherini-Silberstein T, Coornaert M (2010) Cellular automata and groups. Springer monographs in mathematics. Springer, Berlin Heidelberg

    CrossRef  Google Scholar 

  5. Cyr V, Kra B (2015) Nonexpansive \(\mathbb{Z}^2\)-subdynamics and Nivat’s Conjecture. Trans Am Math Soc 367(9):6487–6537

    CrossRef  Google Scholar 

  6. Goles E, Martínez S (1990) Neural and automata networks: dynamical behavior and applications. Kluwer Academic Publishers, USA

    CrossRef  Google Scholar 

  7. Goles E, Martínez S (1998) Cellular automata and complex systems. Nonlinear phenomena and complex systems. Springer, Netherlands

    Google Scholar 

  8. Jeandel E, Rao M (2015) An aperiodic set of 11 wang tiles. arXiv:1506.06492

  9. Kari J (2019) Low-complexity tilings of the plane. Descriptional complexity of formal systems - 21st IFIP WG 1.02 international conference, DCFS 2019 proceedings, vol 11612. Lecture notes in computer science. Springer, pp 35–45

    Google Scholar 

  10. Kari J, Moutot E (2020) Decidability and periodicity of low complexity tilings. In: 37th international symposium on theoretical aspects of computer science, STACS 2020 proceedings, vol 154. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp 14:1–14:12

    Google Scholar 

  11. Kari J, Szabados M (2015) An algebraic geometric approach to Nivat’s cnjecture. In: Automata, languages, and programming - 42nd international colloquium, ICALP 2015 proceedings, Part II, vol 9135. Lecture notes in computer science. Springer, pp 273–285

    Google Scholar 

  12. Nivat M (1997) Keynote address at the 25th anniversary of EATCS, during ICALP 1997, Bologna

    Google Scholar 

  13. Robinson RM (1971) Undecidability and nonperiodicity for tilings of the plane. Inventiones mathematicae 12(3):177–209

    MathSciNet  CrossRef  Google Scholar 

  14. Sloane NJA (2020) The on-line encyclopedia of integer sequences. http://oeis.org

  15. Wang H (1961) Proving theorems by pattern recognition - II. Bell Syst Tech J 40(1):1–41

    CrossRef  Google Scholar 

Download references

Acknowledgements

The research was supported by the Academy of Finland grant 296018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Kari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kari, J. (2022). Domino Problem for Pretty Low Complexity Subshifts. In: Adamatzky, A. (eds) Automata and Complexity. Emergence, Complexity and Computation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92551-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92551-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92550-5

  • Online ISBN: 978-3-030-92551-2

  • eBook Packages: EngineeringEngineering (R0)