Skip to main content

From Additive Flowers to Additive Automata Networks

Part of the Emergence, Complexity and Computation book series (ECC,volume 42)

Abstract

This paper surveys some old results about linear shift registers and restates them in the context of additive automata networks. The addition of new results allows an almost complete description of the dynamical behavior of additive automata networks. The computational complexity aspects of deciding such behaviors are also discussed.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92551-2_18
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92551-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Recall that h injective means \(h(\mathcal {U})=h(\mathcal {V}) \Rightarrow \mathcal {U}=\mathcal {V}\). But since h is a homomorphism it comes \(h(\mathcal {U})-h(\mathcal {V})=0 \iff h(\mathcal {U}-\mathcal {V})=0 \iff (\mathcal {U}-\mathcal {V})\in \ker (h)\), hence \(\ker (h)=\{0\} \iff h \text { injective}\).

References

  1. Elspas B (1959) The theory of autonomous linear sequential networks. IEEE Trans Circuits Syst 6:45–60

    Google Scholar 

  2. Formenti E, Manzoni L, Porreca AE (2014) Fixed points and attractors of reaction systems. In: Beckmann A, Csuhaj-Varjú E, Meer K (eds) Language, Life, Limits - 10th conference on computability in Europe, CiE 2014, Budapest, Hungary, June 23–27, 2014. Proceedings, volume 8493 of Lecture notes in computer science. Springer, pp 194–203

    Google Scholar 

  3. Frei C, Frisch S (2011) Non-unique factorization of polynomials over residue class rings of the integers. Comm Algebra 30:1482–1490

    MathSciNet  CrossRef  Google Scholar 

  4. Gadouleau M (2020) On the influence of the interaction graph on a finite dynamical system. Nat Comput 19(1):15–28

    MathSciNet  CrossRef  Google Scholar 

  5. Jäger G, Wagner C (2009) Efficient parallelizations of hermite and smith normal form algorithms. Parallel Comput 35(6):345–357

    MathSciNet  CrossRef  Google Scholar 

  6. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Google Scholar 

  7. Lidl R, Niederreiter H (1986) Introduction to finite fields and their applications. Cambridge University Press, Cambridge

    Google Scholar 

  8. Milano M, Roli A (2000) Solving the satisfiability problem through boolean networks. In: Lamma E, Mello P (eds) AI*IA 99: Advances in Artificial Intelligence, vol 1792. Lecture Notes in Computer Science. Springer, Berlin, pp 72–83

    Google Scholar 

  9. Noual M (2012) Updating automata networks. PhD thesis, Ecole Normale Supérieure de Lyon

    Google Scholar 

  10. OEIS (2008) Sequence A046932

    Google Scholar 

  11. International Math Olympiads (1993) Problem 6

    Google Scholar 

  12. Richard A (2019) Positive and negative cycles in boolean networks. J Theor Biol 463:67–76

    MathSciNet  CrossRef  Google Scholar 

  13. Storjohann A (1998) An \(O(n^3)\) algorithm for frobenius normal form. In: International symposium and algebraic computation (ISSAC’98). ACM Press, pp 101–104

    Google Scholar 

  14. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585

    CrossRef  Google Scholar 

  15. Tosic PT (2005) On complexity of counting fixed points in certain classes of graph automata. In: Electronic colloquium on computational complexity (ECCC), (051)

    Google Scholar 

  16. Villard G (200) Computing the Frobenius normal form of a sparse matrix. In: The third international workshop on computer algebra in scientific computing. Springer, pp 395–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Formenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Formenti, E., Papazian, C., Richard, A., Scribot, PA. (2022). From Additive Flowers to Additive Automata Networks. In: Adamatzky, A. (eds) Automata and Complexity. Emergence, Complexity and Computation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92551-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92551-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92550-5

  • Online ISBN: 978-3-030-92551-2

  • eBook Packages: EngineeringEngineering (R0)