Skip to main content

Thermodynamics of Small Systems Through a Reversible and Conservative Discrete Automaton

Part of the Emergence, Complexity and Computation book series (ECC,volume 42)

Abstract

The Q2R model is a cellular automaton which is a dynamical variation of the Ising model for ferromagnetism that possesses quite rich and complex dynamics. It has the property of being conservative and reversible but, in practice, it shows irreversible behavior for relatively small system sizes. In this work we review some of its main properties and use it to simulate de behavior of a classical model for irreversible thermodynamical systems: the Ehrenfest’s dog-flea model.

Keywords

  • Fixed point
  • Cycle
  • Cellular automata

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92551-2_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92551-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    Other dynamical invariants are known in the literature [10].

References

  1. Loschmidt J (1876) Uber das warmegleichgewicht eines systems von korpern mit rucksicht auf die schwere, Sitzungsber. Kais Akad Wiss Wien Math Naturwiss Classe 73:128–142

    Google Scholar 

  2. Zermelo E (1896) Über einen Satz der Dynamik und die mechanische wärmetheorie. Annalen der Physik 293(3):485–494

    CrossRef  Google Scholar 

  3. Zermelo E (1896) Ueber mechanische Erklärungen irreversibler vorgänge. Eine Antwort auf Hrn Boltzmann’s “Entgegnung”, Annalen der Physik 295(12):793–801

    Google Scholar 

  4. Ehrenfest P, Ehrenfest-Afanassjewa T, Über eine Aufgabe aus der Wahrscheinlichkeitsrechnung, die mit der kinetischen Deutung der Entropievermehrung zusammenhängt, Mathematisch Naturwissenschaftliche Blätter 3

    Google Scholar 

  5. Ehrenfest P, Ehrenfest-Afanassjewa T (1907) Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Hirzel

    Google Scholar 

  6. Kac M (1947) Random walk and the theory of brownian motion. Amer Math Month 54(7P1):369–391

    Google Scholar 

  7. Urbina F, Rica S (2016) Master equation approach to reversible and conservative discrete systems. Phys Rev E 94(6):062140

    Google Scholar 

  8. Nicolis G, Nicolis C (1988) Master-equation approach to deterministic chaos. Phys Rev A 38(1):427

    Google Scholar 

  9. Pomeau Y (1984) Invariant in cellular automata. J Phys A: Math Gen 17(8):L415

    MathSciNet  CrossRef  Google Scholar 

  10. Takesue S (1995) Staggered invariants in cellular automata. Complex Syst 9(2):149–168

    MathSciNet  MATH  Google Scholar 

  11. Herrmann H (1986) Fast algorithm for the simulation of ising models. J Stat Phys 45(1–2):145–151

    CrossRef  Google Scholar 

  12. Hermann H, Carmesin H, Stauffer D (1987) Periods and clusters in Ising cellular automata. J Phys A: Math Gen 20(14):4939

    MathSciNet  CrossRef  Google Scholar 

  13. Goles E, Rica S (2011) Irreversibility and spontaneous appearance of coherent behavior in reversible systems. Eur Phys J D 62(1):127–137

    CrossRef  Google Scholar 

  14. Onsager L (1944) Crystal statistics. I. A Two-dimensional model with an order-disorder transition. Phys Rev 65:117–149

    Google Scholar 

  15. Grassberger P (1986) Long-range effects in an elementary cellular automaton. J Stat Phys 45(1–2):27–39

    MathSciNet  CrossRef  Google Scholar 

  16. Vichniac GY (1984) Simulating physics with cellular automata. Phys D: Nonlinear Phenom 10(1–2):96–116

    MathSciNet  CrossRef  Google Scholar 

  17. Montalva-Medel M, Rica S, Urbina F (2020) Phase space classification of an Ising cellular automaton: the Q2R model. Chaos Solitons Fractals 133:109618

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Montalva-Medel, M., Rica, S., Urbina, F. (2022). Thermodynamics of Small Systems Through a Reversible and Conservative Discrete Automaton. In: Adamatzky, A. (eds) Automata and Complexity. Emergence, Complexity and Computation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92551-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92551-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92550-5

  • Online ISBN: 978-3-030-92551-2

  • eBook Packages: EngineeringEngineering (R0)