Skip to main content

The Effect of Scandium on the Electronic and Transport Properties of MgO

  • Conference paper
  • First Online:
Magnesium Technology 2022

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1524 Accesses

Abstract

The electronic and transport properties of Mg1-xScxO (x = 0, 0.25, 0.5 and 1) alloys are investigated using the first principles total energy pseudopotential and the full potential linearized augmented plane wave (FP-LAPW) methods under the density functional theory (DFT). Since Mg and Sc atoms have comparable sizes, the substitution of Sc for Mg in the conventional unit cell of the rock salt structure of MgO is viable. The relaxed structures of the alloys are used to elucidate the electronic and transport properties using the semi-classical Boltzmann transport theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niessen RAH, Notten PHL (2005), Hydrogen storage in thin film magnesium-scandium alloys. J Alloy Comp, 404 (406) 457–460.

    Google Scholar 

  2. Ogawa, Y., Ando, D., Sutou, Y., & Koike, J. (2016). A lightweight shape-memory magnesium alloy. Science, 353(6297), 368–370. https://doi.org/10.1126/SCIENCE.AAF6524.

  3. Xiao J, Ding W, Peng Y, Chen T, Zou K. Preparing Sc-Bearing Master Alloy Using Aluminum–Magnesium Thermoreduction Method. Metals. 2020; 10(7):960.

    Google Scholar 

  4. Goodfellow. (2019). Magnesia - Magnesium Oxide (MgO) Properties & Applications. AZoM. https://www.azom.com/article.aspx?ArticleID=54.

  5. X. Liu, Y. D. Deng, Z. Li, and C. Q. Su, Energy Convers. Manage. 90, 121 (2015).

    Google Scholar 

  6. Pradeepkumar Sundarraj, Dipak Maity, Susanta Sinha Roy, Robert A. Taylor. (2014) Recent advances in thermoelectric materials and solar thermoelectric generators - a critical review. RSC Adv. 4:87, pages 46860–46874.

    Google Scholar 

  7. Ramanathan AA and Khalifeh JM (2017). The electronic and thermoelectric properties of Si1-xVx alloy from first principles, Applied Microscopy, 47(3) 105.

    Google Scholar 

  8. Elsheikh MH, Shnawah DA, Sabri MFM, Said SBM, Hassan MH, Bashir MBA, et al. Renewable and Sustainable Energy Reviews. 2014;30:337–355.

    Google Scholar 

  9. Pei Y, LaLonde AD, Heinz NA, Shi X, Iwanaga S, Wang H, Chen L and Snyder GJ (2011), Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Adv. Mater., 23: 5674–5678.

    Google Scholar 

  10. X. Liang, Thermoelectric transport properties of naturally nanostructured Ga–ZnO ceramics: effect of point defect and interfaces. J. Eur. Ceram. Soc., 36 (2016), pp. 1643–1650.

    Google Scholar 

  11. Ramanathan AA and Khalifeh JM (2018). Enhanced thermoelectric properties of suspended mono and bilayer of MoS2 from first principles. IEEE Transactions on nanotechnology, 17(5), 974.

    Google Scholar 

  12. Li, D., Gong, Y., Chen, Y. et al. Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Lett. 12, 36 (2020).

    Google Scholar 

  13. Jinseo Kim, Le Thai Duy, Hyunwoo Kang, Byungmin Ahn, Hyungtak Seo Fluorine doping for improved thermoelectric properties of spark plasma sintered bismuth telluride. Journal of Materials Science & Technology 90, 2021, 225-235.

    Google Scholar 

  14. Ramanathan AA and Khalifeh JM (2021). Thermoelectrics of MoS2(1-x)N2x compounds. DOI: https://doi.org/10.23880/psbj-16000167.

  15. Ramanathan, A.A, (2013) A DFT calculation of Nb and Ta (001) Surface Properties, JMP, Special issue-DFT, 4, 432–437.

    Google Scholar 

  16. X. Gonze, F. Jollet, F. A. Araujoa, D. Adams, B. Amadon, T. Applencourt et al (2016). Recent developments in the ABINIT software package. Computer Physics Communications 205, 106.

    Google Scholar 

  17. Ramanathan AA, Khalifeh JM and Hamad BA (2008). Evidence of surface magnetism in the V/Nb(0 0 1) system: A total energy pseudopotential calculation. Surf. Sci. 602, 607.

    Google Scholar 

  18. Ramanathan AA, Khalifeh JM and Hamad BA (2009). Structure and magnetism of the V/Ta(0 01) surface: A DFT calculation, JMMM, 321, 3804–3807.

    Google Scholar 

  19. Troullier N and Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993.

    Google Scholar 

  20. Hartwigsen C, Goedecker S, Hutter J, Phys. Rev. B 58 (1998) 3641.

    Google Scholar 

  21. P. Blaha, K.Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen and L.D. Marks, J. Chem. Phys. (2020) 152, 074101

    Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. (1996) 77, 3865.

    Google Scholar 

  23. G. K. H. Madsen, and D. J Singh (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications 175(1), 67.

    Google Scholar 

  24. Taurian, O.E.; Springborg, M.; Christensen, N.E. (1985). Self-consistent electronic structures of MgO and SrO, Solid State Communications. 55 (4): 351–5.

    Google Scholar 

  25. The Materials Project. Materials Data on MgO by Materials Project. United States: N. p., 2020. doi:https://doi.org/10.17188/1189109.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramanathan, A.A. (2022). The Effect of Scandium on the Electronic and Transport Properties of MgO. In: Maier, P., Barela, S., Miller, V.M., Neelameggham, N.R. (eds) Magnesium Technology 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92533-8_52

Download citation

Publish with us

Policies and ethics