Skip to main content

Microstructure and Texture Analysis of Dissimilar Friction Stir Welded AZ31 Mg and Al 6061 Joint

  • Conference paper
  • First Online:
Magnesium Technology 2022

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The objective of this work is to analyze the microstructure and texture upon friction stir welding of AZ31 Mg and Al 6061 alloys. Various light-weighting applications prompt for welding of Mg alloys with another material. Friction stir welding has shown potential to join dissimilar materials, with the limited formation of undesirable intermetallic. The joint performance is affected by the texture and microstructure, which evolve during the process owing to higher temperature plastic deformation. The friction stir welding of AZ31 Mg and Al 6061 is performed at 100 mm/min feed rate and 500 rpm tool rotation speed with 2° tilt angle. In the stir region, both materials have undergone grain refinement. However, the stir region itself is asymmetrical with respect to the tool centreline and higher grain refinement is observed on the AZ31 Mg side. Further, tilted basal texture and cubic texture are noticed on the AZ31 Mg and Al 6061 sides, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials science and engineering: R: reports50(1–2), 1–78.

    Google Scholar 

  2. Su, J. Q., Nelson, T. W., & Sterling, C. J. (2005). Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering: A405(1–2), 277–286.

    Google Scholar 

  3. Liu, P., Shi, Q., Wang, W., Wang, X., & Zhang, Z. (2008). Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials. Materials letters, 62(25), 4106–4108.

    Google Scholar 

  4. Somasekharan, A. C., & Murr, L. E. (2006). Characterization of complex, solid-state flow and mixing in the friction-stir welding (FSW) of aluminum alloy 6061-T6 to magnesium alloy AZ91D using color metallography. Journal of materials science, 41(16), 5365–5370.

    Google Scholar 

  5. Uzun, H., Dalle Donne, C., Argagnotto, A., Ghidini, T., & Gambaro, C. (2005). Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel. Materials & design, 26(1), 41–46.

    Google Scholar 

  6. Bang, H., Bang, H., Song, H., & Joo, S. (2013). Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6% Al–4% V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Materials & Design, 51, 544–551.

    Google Scholar 

  7. Gotawala, N., & Shrivastava, A. (2020). Microstructural analysis and mechanical behavior of SS 304 and titanium joint from friction stir butt welding. Materials Science and Engineering: A, 789, 139658.

    Google Scholar 

  8. Jata, K., & Semiatin, S. (2000). Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Air force research lab wright-patterson afb oh materials and manufacturing directorate.

    Google Scholar 

  9. Prangnell, P. B., & Heason, C. P. (2005). Grain structure formation during friction stir welding observed by the ‘stop action technique’. Acta Materialia53(11), 3179–3192.

    Google Scholar 

  10. McNelley, T. R., Swaminathan, S., & Su, J. Q. (2008). Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta materialia58(5), 349–354.

    Google Scholar 

  11. Fonda, R. W., & Bingert, J. F. (2007). Texture variations in an aluminum friction stir weld. Scripta Materialia57(11), 1052–1055.

    Google Scholar 

  12. Ahmed, M. M. Z., Wynne, B. P., Seleman, M. E. S., & Rainforth, W. M. (2016). A comparison of crystallographic texture and grain structure development in aluminum generated by friction stir welding and high strain torsion. Materials & Design103, 259–267.

    Google Scholar 

  13. Mironov, S., Onuma, T., Sato, Y. S., & Kokawa, H. (2015). Microstructure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Materialia100, 301–312.

    Google Scholar 

  14. Tripathi, A., Tewari, A., Kanjarla, A. K., Srinivasan, N., Reddy, G. M., Zhu, S. M., ... & Samajdar, I. (2016). Microstructural evolution during multi-pass friction stir processing of a magnesium alloy. Metallurgical and Materials Transactions A47(5), 2201–2216.

    Google Scholar 

  15. Gotawala, N., Kumar, A., Mishra, S., & Shrivastava, A. (2021). Microstructure and texture evolution of complete Mg-3Al-0.2 Ce alloy blanks upon multi-pass friction stir processing with spiral strategy. Materials Today Communications26, 101850.

    Google Scholar 

  16. Moradi, M. M., Aval, H. J., Jamaati, R., Amirkhanlou, S., & Ji, S. (2018). Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. Journal of Manufacturing Processes32, 1–10.

    Google Scholar 

  17. Raturi, M., & Bhattacharya, A. (2021). Microstructure and texture correlation of secondary heating assisted dissimilar friction stir welds of aluminum alloys. Materials Science and Engineering: A, 141891.

    Google Scholar 

  18. Krishnan, K. N. (2002). On the formation of onion rings in friction stir welds. Materials science and engineering: A327(2), 246–251.

    Google Scholar 

  19. Schmidt, H. N. B., Dickerson, T. L., & Hattel, J. H. (2006). Acta Materialia54(4), 1199–1209.

    Google Scholar 

  20. Seidel, T. U., & Reynolds, A. P. (2001). Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metallurgical and materials transactions A32(11), 2879–2884.

    Google Scholar 

  21. Liu, H. J., Zhang, H. J., & Yu, L. (2011). Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Materials & Design32(3), 1548–1553.

    Google Scholar 

  22. Zhang, H. J., Liu, H. J., & Yu, L. (2011). Microstructural evolution and its effect on mechanical performance of joint in underwater friction stir welded 2219-T6 aluminium alloy. Science and Technology of Welding and Joining16(5), 459–464.

    Google Scholar 

  23. Soundararajan, V., Yarrapareddy, E., & Kovacevic, R. (2007). Investigation of the friction stir lap welding of aluminum alloys AA 5182 and AA 6022. Journal of Materials Engineering and Performance16(4), 477–484.

    Google Scholar 

  24. Huang, K., & Logé, R. E. (2016). A review of dynamic recrystallization phenomena in metallic materials. Materials & Design111, 548–574.

    Google Scholar 

  25. Dorbane, A., Mansoor, B., Ayoub, G., Shunmugasamy, V. C., & Imad, A. (2016). Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Materials Science and Engineering: A651, 720–733.

    Google Scholar 

  26. Kwang-Jin, Lee, & Eui-Pyo, Kwon. (2014). Microstructure of stir zone in dissimilar friction stir welds of AA6061-T6 and AZ31 alloy sheets. Transactions of Nonferrous Metals Society of China24(7), 2374–2379.

    Google Scholar 

  27. Alaneme, K. K., & Okotete, E. A. (2017). Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments. Journal of magnesium and alloys5(4), 460–475.

    Google Scholar 

  28. Alvi, M. H., Cheong, S. W., Suni, J. P., Weiland, H., & Rollett, A. D. (2008). Cube texture in hot-rolled aluminum alloy 1050 (AA1050)—nucleation and growth behavior. Acta materialia56(13), 3098–3108.

    Google Scholar 

  29. Samajdar, I., & Doherty, R. D. (1998). Cube recrystallization texture in warm deformed aluminum: understanding and prediction. Acta materialia46(9), 3145–3158.

    Google Scholar 

  30. Yang, J., Wang, D., Xiao, B. L., Ni, D. R., & Ma, Z. Y. (2013). Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy. Metallurgical and Materials Transactions A44(1), 517–530.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support of this work by the Science & Engineering Research Board, Department of Science & Technology, Government of India (File no. ECR/2017/000727/ES), Department of Mechanical Engineering, Microstructural Mechanics and Microforming Lab and Machine Tools Lab at Indian Institute of Technology Bombay, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gotawala, N., Shrivastava, A. (2022). Microstructure and Texture Analysis of Dissimilar Friction Stir Welded AZ31 Mg and Al 6061 Joint. In: Maier, P., Barela, S., Miller, V.M., Neelameggham, N.R. (eds) Magnesium Technology 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92533-8_32

Download citation

Publish with us

Policies and ethics