Skip to main content

Wire-Based Additive Manufacturing of Magnesium Alloys

  • 1266 Accesses

Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Additive manufacturing is experiencing a strong increase in scientific and industrial interest as well as steadily growing areas of application, as it allows the production of complex parts and revolutionizes possibilities for lightweight construction. The resulting potential can be further enhanced by using magnesium alloys. Since the mostly used additive manufacturing processes are powder-based, they involve handling of highly reactive materials and require the use of closed production chambers, especially when Mg is involved. In contrast, these problems can be avoided with wire-based additive manufacturing methods. Additionally, higher deposition rates can be achieved. Here, wire-based additive manufacturing utilizing the Cold Metal Transfer process (CMT) is used to demonstrate the feasibility of processing a magnesium alloy suitable for use in structural applications. Characterization of the fabricated structures was performed, and the results of the microstructural and mechanical investigations are presented here.

Keywords

  • Magnesium alloy
  • Wire based additive manufacturing
  • Mechanical properties
  • Microstructure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92533-8_30
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92533-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Czerwinski, F. Controlling the Ignition and Flammability of Magnesium for Aerospace Applications. Corros. Sci. 2014, 86, 1–16. https://doi.org/10.1016/j.corsci.2014.04.047.

  2. Manakari, V.; Parande, G.; Gupta, M. Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review. Metals 2017, 7, 2. https://doi.org/10.3390/met7010002.

  3. Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. https://doi.org/10.1007/s11665-014-0958-z.

  4. Karunakaran, R.; Ortgies, S.; Tamayol, A.; Bobaru, F.; Sealy, M.P. Additive Manufacturing of Magnesium Alloys. Bioact. Mater. 2020, 5, 44–54. https://doi.org/10.1016/j.bioactmat.2019.12.004.

  5. Windhagen, H.; Radtke, K.; Weizbauer, A.; Diekmann, J.; Noll, Y.; Kreimeyer, U.; Schavan, R.; Stukenborg-Colsman, C.; Waizy, H. Biodegradable Magnesium-Based Screw Clinically Equivalent to Titanium Screw in Hallux Valgus Surgery: Short Term Results of the First Prospective, Randomized, Controlled Clinical Pilot Study. Biomed. Eng. OnLine 2013, 12, 62. https://doi.org/10.1186/1475-925X-12-62.

  6. Gieseke, M.; Kiesow, T.; Noelke, C.; Kaierle, S.; Maier, H.J.; Matena, J.; Kampmann, A.; Nolte, I.; Gellrich, N.-C.; Haferkamp, H. Challenges of Processing Magnesium and Magnesium Alloys by Selective Laser Melting. In Proceedings of the World PM 2016 Congress and Exhibition. European Powder Metallurgy Association (EPMA); Hamburg, 2016.

    Google Scholar 

  7. Gieseke, M.; Noelke, C.; Kaierle, S.; Wesling, V.; Haferkamp, H. Selective Laser Melting of Magnesium and Magnesium Alloys. In Magnesium Technology 2013; Hort, N., Mathaudhu, S.N., Neelameggham, N.R., Alderman, M., Eds.; Springer International Publishing: Cham, 2016; pp. 65–68.

    Google Scholar 

  8. Klein, T.; Schnall, M. Control of Macro-/Microstructure and Mechanical Properties of a Wire-Arc Additive Manufactured Aluminum Alloy. Int. J. Adv. Manuf. Technol. 2020. https://doi.org/10.1007/s00170-020-05396-6.

  9. Klein, T.; Graf, G.; Staron, P.; Stark, A.; Clemens, H.; Spoerk-Erdely, P. Microstructure Evolution Induced by the Intrinsic Heat Treatment Occurring during Wire-Arc Additive Manufacturing of an Al-Mg-Zn-Cu Crossover Alloy. Mater. Lett. 2021, 303, 130500. https://doi.org/10.1016/j.matlet.2021.130500.

  10. Horgar, A.; Fostervoll, H.; Nyhus, B.; Ren, X.; Eriksson, M.; Akselsen, O.M. Additive Manufacturing Using WAAM with AA5183 Wire. J. Mater. Process. Technol. 2018, 259, 68–74. https://doi.org/10.1016/j.jmatprotec.2018.04.014.

  11. Bermingham, M.J.; Kent, D.; Zhan, H.; StJohn, D.H.; Dargusch, M.S. Controlling the Microstructure and Properties of Wire Arc Additive Manufactured Ti–6Al–4V with Trace Boron Additions. Acta Mater. 2015, C, 289–303. https://doi.org/10.1016/j.actamat.2015.03.035.

  12. Ho, A.; Zhao, H.; Fellowes, J.W.; Martina, F.; Davis, A.E.; Prangnell, P.B. On the Origin of Microstructural Banding in Ti-6Al4V Wire-Arc Based High Deposition Rate Additive Manufacturing. 2019. https://doi.org/10.1016/j.actamat.2018.12.038.

  13. Rodrigues, T.A.; Duarte, V.; Avila, J.A.; Santos, T.G.; Miranda, R.M.; Oliveira, J.P. Wire and Arc Additive Manufacturing of HSLA Steel: Effect of Thermal Cycles on Microstructure and Mechanical Properties. Addit. Manuf. 2019, 27, 440–450. https://doi.org/10.1016/j.addma.2019.03.029.

  14. Jin, W.; Zhang, C.; Jin, S.; Tian, Y.; Wellmann, D.; Liu, W. Wire Arc Additive Manufacturing of Stainless Steels: A Review. Appl. Sci. 2020, 10, 1563. https://doi.org/10.3390/app10051563.

  15. Klein, T.; Arnoldt, A.; Schnall, M.; Gneiger, S. Microstructure Formation and Mechanical Properties of a Wire-Arc Additive Manufactured Magnesium Alloy. JOM 2021, 73, 1126–1134. https://doi.org/10.1007/s11837-021-04567-4.

  16. Guo, J.; Zhou, Y.; Liu, C.; Wu, Q.; Chen, X.; Lu, J. Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency. Materials 2016, 9, 823. https://doi.org/10.3390/ma9100823.

  17. Takagi, H.; Sasahara, H.; Abe, T.; Sannomiya, H.; Nishiyama, S.; Ohta, S.; Nakamura, K. Material-Property Evaluation of Magnesium Alloys Fabricated Using Wire-and-Arc-Based Additive Manufacturing. Addit. Manuf. 2018, 24, 498–507. https://doi.org/10.1016/j.addma.2018.10.026.

  18. Avedesian, M.M.; Baker, H. ASM Specialty Handbook: Magnesium and Magnesium Alloys; ASM International, 1999.

    Google Scholar 

  19. Kammer, C. Magnesium-Taschenbuch; Aluminium-Verlag, 2000.

    Google Scholar 

  20. Gneiger, S.; Österreicher, J.A.; Arnoldt, A.R.; Birgmann, A.; Fehlbier, M. Development of a High Strength Magnesium Alloy for Wire Arc Additive Manufacturing. Metals 2020, 10, 778. https://doi.org/10.3390/met10060778.

  21. Gneiger, S.; Gradinger, R.; Betz, A. Manufacturing Route for Producing Tailor-Made Magnesium Wires for Welding and ALM Purposes. In Proceedings of the Proceedings of the 2017 World Magnesium Conference; Singapore, 2017.

    Google Scholar 

  22. Dargusch, M.S.; Nave, M.; McDonald, S.D.; StJohn, D.H. The Effect of Aluminium Content on the Eutectic Morphology of High Pressure Die Cast Magnesium–Aluminium Alloys. J. Alloys Compd. 2010, 492, L64–L68. https://doi.org/10.1016/j.jallcom.2009.11.199.

  23. Nave, M.; Dahle, A.; John, D. Eutectic Growth Morphologies in Magnesium-Aluminium Alloys. In Magnesium Technology. 2000. https://doi.org/10.1002/9781118808962.ch33.

  24. Dahle, A.K.; Lee, Y.C.; Nave, M.D.; Schaffer, P.L.; StJohn, D.H. Development of the As-Cast Microstructure in Magnesium–Aluminium Alloys. J. Light Met. 2001, 1, 61–72. https://doi.org/10.1016/S1471-5317(00)00007-9.

Download references

Acknowledgements

The authors would like to thankfully acknowledge the work done by the technical staff at the LKR Ranshofen as well as the support by their colleagues and partners of the scientific community.

Funding

Funding

This research has been funded by the European Comission within the framework INTERREG V-A Austria–Czech Republic in the project “ReMaP” (Interreg project no. ATCZ229).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.G., D.K., and S.S.; methodology, S.G., T.K., and M.S.; software, S.G.; validation, S.G. and D.K.; formal analysis, D.K. and S.S.; investigation, S.G. and D.K.; resources, S.G., D.K., and S.S.; data curation, N.P.P.; writing—original draft preparation, S.G. and N.P.P.; writing—review and editing, T.K., M.S., D.K., and S.S.; visualization, S.G. and N.P.P.; supervision, S.G.; project administration, S.G.; funding acquisition, S.G., D.K., and S.S.

Corresponding author

Correspondence to Stefan Gneiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gneiger, S., Koutny, D., Senck, S., Schnall, M., Papenberg, N., Klein, T. (2022). Wire-Based Additive Manufacturing of Magnesium Alloys. In: Maier, P., Barela, S., Miller, V.M., Neelameggham, N.R. (eds) Magnesium Technology 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92533-8_30

Download citation