Skip to main content

Accelerating MCMC by Rare Intermittent Resets

  • Conference paper
  • First Online:
Performance Evaluation Methodologies and Tools (VALUETOOLS 2021)

Abstract

We propose a scheme for accelerating Markov Chain Monte Carlo by introducing random resets that become increasingly rare in a precise sense. We show that this still leads to the desired asymptotic average and establish an associated concentration bound. We show by numerical experiments that this scheme can be used to advantage in order to accelerate convergence by a judicious choice of the resetting mechanism.

V. S. Borkar—Work of this author was supported in part by a S. S. Bhatnagar Fellowship from the Council of Scientific and Industrial Research, Government of India.

S. Chaudhuri—Now with the Dept. of EECS, Uni. of California, Berkeley, Cory Hall, Berkeley 94720, CA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anily, S., Federgruen, A.: Simulated annealing methods with general acceptance probabilities. J. Appl. Prob. 24(3), 657–667 (1987)

    Article  MathSciNet  Google Scholar 

  2. Apers, S., Sarlette, A., Ticozzi, F.: Characterizing limits and opportunities in speeding up Markov chain mixing. Stochast. Process. Appl. 136, 145–191 (2021)

    Article  MathSciNet  Google Scholar 

  3. Avrachenkov, K., Borkar, V.S., Kadavankandy, A., Sreedharan, J.K.: Revisiting random walk based sampling in networks: Evasion of burn-in period and frequent regenerations. Comput. Social Netw. 5(4), 1–19 (2018)

    Google Scholar 

  4. Avrachenkov, K., Ribeiro, B., Towsley, D.: Improving random walk estimation accuracy with uniform restarts. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 98–109. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-18009-5_10

    Chapter  Google Scholar 

  5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  6. Collet, P., Martinéz, S., San Martin, J.: Quasi-Stationary Distributions: Markov Chains, Diffusions and Dynamical Systems. Probability and Its Applications, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33131-2

    Book  MATH  Google Scholar 

  7. Cooper, C., Radzik, T., Siantos, Y.: Fast low-cost estimation of network properties using random walks. Internet Math. 12(4), 221–238 (2016)

    Article  MathSciNet  Google Scholar 

  8. Deuflhard, P., Huisinga, W., Fischer, A., Schütte, C.: Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra Appl. 315(1), 39–59 (2000)

    Article  MathSciNet  Google Scholar 

  9. Evans, M.R., Majumdar, S.N., Schehr, G.: Stochastic resetting and applications. J. Phys. A Math. Theor. 53(19), 193001 (2020)

    Article  MathSciNet  Google Scholar 

  10. Giles, C., Bollacker, K., Lawrence, S.: Citeseer: an automatic citation indexing system. In: Proceedings of 3rd ACM Conference on Digital Libraries (2000)

    Google Scholar 

  11. Guan, Y., Krone, S.N.: Small-world MCMC and convergence to multi-modal distributions: from slow mixing to fast mixing. Ann. Appl. Prob. 17(1), 284–304 (2007)

    Article  MathSciNet  Google Scholar 

  12. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkx. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp. 11–15 (2008)

    Google Scholar 

  13. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(2), 311–329 (1988)

    Article  MathSciNet  Google Scholar 

  14. Heckathorn, D.D.: Respondent-driven sampling: a new approach to the study of hidden populations. Social Prob. 44(2), 174–199 (1997)

    Article  Google Scholar 

  15. Holley, R., Stroock, D.: Simulated annealing via Sobolev inequalities. Commun. Math. Phys. 115(4), 553–569 (1988)

    Article  MathSciNet  Google Scholar 

  16. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Math. 1(3), 335–380 (2004)

    Article  MathSciNet  Google Scholar 

  17. Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)

    Google Scholar 

  18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  19. Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1(3), 237–354 (2006)

    Article  MathSciNet  Google Scholar 

  20. Paulin, D.: Concentration inequalities for Markov chains by Marton couplings and spectral methods. Electron. J. Prob. 20, 1–32 (2015)

    Article  MathSciNet  Google Scholar 

  21. Ribeiro, B., Towsley, D.: Estimating and sampling graphs with multidimensional random walks. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, IMC ’10, pp. 390–403. Association for Computing Machinery, New York (2010)

    Google Scholar 

  22. Robert, C., Elvira, V., Tawn, N., Wu, C.: Accelerating MCMC algorithms. Wiley Interdisc. Rev. Comput. Stat. 10, e1435 (2018)

    Article  MathSciNet  Google Scholar 

  23. Tsitsiklis, J.: Markov chains with rare transitions and simulated annealing. Math. Oper. Res. 14, 70–90 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek S. Borkar .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Here we provide the proofs of Theorem 1 and 2 in Sect. 2.

Proof of Theorem 1:

By the martingale law of large numbers, we have

$$\zeta _n(j) := \frac{1}{n}\sum _{m=1}^n(I\{X_m=j\} - \sum _iq_{m-1}(j|i)I\{X_{m-1} = i\}) \rightarrow 0$$

a.s. \(\forall \ j \in S\). Combining this with (1), we have

$$\frac{1}{n}\sum _{m=1}^n(I\{X_m=j\} - \sum _ip(j|i)I\{X_{m-1} = i\}) \rightarrow 0$$

a.s. Hence any limit point \(\nu ^*\) of \(\{\nu _n\}\) as \(n\rightarrow \infty \) satisfies

$$\nu ^*(j) = \sum _i\nu ^*(i)p(j|i) \ \forall \ j \in S.$$

This implies (2).    \(\square \)

Proof of Theorem 2:

By (3), we have,

$$\begin{aligned} \Vert \nu _n - \pi \Vert \le C\Vert \nu _n - \nu _nP\Vert . \end{aligned}$$
(4)

Note that

Bounding each term, we get

$$ |\nu _n(j) - \sum _ip(j|i)\nu _n(i)| \le |\zeta _n(j)| + \frac{1}{n} + \frac{\eta (n)}{n}.$$

Hence

$$\begin{aligned} \Vert \nu _n - \nu _nP\Vert \le \Vert \zeta _n\Vert + \sqrt{s}\left( \frac{\eta (n) + 1}{n}\right) , \end{aligned}$$

and

$$\Vert \nu _n - \pi \Vert \le C\left[ \Vert \zeta _n\Vert + \sqrt{s}\left( \frac{\eta (n) + 1}{n}\right) \right] .$$

For \(j \in S\) and \(\bar{x} := [x_0, \cdots , x_n]\), let

$$f(\bar{x}) := \frac{1}{n}\sum _{m=1}^n(I\{x_m = j\} - \sum _ip(j|i)I\{x_{m-1} = i\}).$$

Defining \(\bar{y}\) analogously, note that \(f(\bar{x}) - f(\bar{y}) \le \frac{2}{n}\sum _{m=1}^n I\{ x_i \ne y_i\}\). By Corollary 2.10 of [20], we then have, for any \(\delta > 0\),

$$P\left( |\zeta _n(j)| < \frac{\delta }{C\sqrt{s}}\right) \ \ge \ 1 - 2e^{-\frac{\delta ^2n}{2sC^2\tau _{min}}}.$$

This proves the claim.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borkar, V.S., Chaudhuri, S. (2021). Accelerating MCMC by Rare Intermittent Resets. In: Zhao, Q., Xia, L. (eds) Performance Evaluation Methodologies and Tools. VALUETOOLS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 404. Springer, Cham. https://doi.org/10.1007/978-3-030-92511-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92511-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92510-9

  • Online ISBN: 978-3-030-92511-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics