Skip to main content

Computational Algorithm for an Analysis of a Single-Line Queueing System with Arrived Alternating Poisson Flow

  • 284 Accesses

Part of the Lecture Notes in Computer Science book series (LNCCN,volume 13144)


The M/G/1 queue is considered for a case when an alternating Poisson flow takes place on the input. The analysis is based on an embedded Markov chain, built on the instants of service ending. Various algorithms are elaborated for the calculation of the distribution of the system’ states and various numerical indices.


  • Poisson flow
  • Random environment
  • Pollaczek-Khinchine formula

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. van Hoorn, M.H., Seelen, L.P.: The SPP/G/1 queue: a single server queue with a switched Poisson process as input process. Oper. Res. Spektrum 5(4), 207–218 (1983).

    CrossRef  MATH  Google Scholar 

  2. Regterschot, G.J.K., De Smit, J.H.A.: The queue M/G/1 with Markov modulated arrivals and services. Math. Oper. Res. 11(3), 465–483 (1986)

    CrossRef  MathSciNet  Google Scholar 

  3. Neuts, M.F.: Structured stochastic matrices of MG-1 type and their applications. Dekker (1989)

    Google Scholar 

  4. Rossiter, M.H.: The switched Poisson process and the SPP/G/1 queue. In: Bonatti, M. (ed.) ITC-12, pp. 1406–1412. North-Holland (1989)

    Google Scholar 

  5. Takine, T., Takahashi, Y.: On the relationship between queue lengths at a random instant and at a departure in the stationary queue with BMAP arrivals. Communications in statistics. Stochast. Models 14(3), 601–610 (1998)

    Google Scholar 

  6. Asmussen, S.: Ladder heights and the Markov-modulated M/G/1 queue. Stochast. Processes Appl. 37(2), 313–326 (1991)

    CrossRef  MathSciNet  Google Scholar 

  7. Takine, T.: A new recursion for the queue length distribution in the stationary BMAP/G/1 queue. Stoch. Model. 16(2), 335–341 (2000)

    CrossRef  MathSciNet  Google Scholar 

  8. Du, Q.: A monotonicity result for a single-server queue subject to a Markov-modulated Poisson process. J. Appl. Probability, 1103–1111 (1995)

    Google Scholar 

  9. Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993)

    CrossRef  MathSciNet  Google Scholar 

  10. Andronov, A.M., Dalinger, I.M.: Poisson flows with alternating intensity and their application. Autom. Control. Comput. Sci. 54(5), 403–411 (2020).

    CrossRef  Google Scholar 

  11. Tang, L.C., Prabhu, N.U., Pacheco, A.: Markov-modulated processes and semiregenerative phenomena. World Scientific (2008)

    Google Scholar 

  12. Sleeper, A.: Six sigma distribution modeling. McGraw Hill Professional (2007)

    Google Scholar 

  13. Gnedenko, B.V., Kovalenko, I.N.: Introduction to queueing theory. Birkhäuser (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nadezda Spiridovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andronov, A.M., Dalinger, I.M., Spiridovska, N. (2021). Computational Algorithm for an Analysis of a Single-Line Queueing System with Arrived Alternating Poisson Flow. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks: Control, Computation, Communications. DCCN 2021. Lecture Notes in Computer Science(), vol 13144. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92506-2

  • Online ISBN: 978-3-030-92507-9

  • eBook Packages: Computer ScienceComputer Science (R0)