Skip to main content

Epigenetic Control of Diatom Genomes: An Overview from In Silico Characterization to Functional Studies

  • Chapter
  • First Online:
The Molecular Life of Diatoms

Abstract

Epigenetics and its role in genome regulation is one of the most exciting areas of modern science. After a brief history of epigenetics and an introduction to the molecular basics of this discipline of science, this chapter describes the current knowledge of epigenetic components in diatoms, namely writers and erasers of DNA methylation and histone modifications. With a particular focus on the model pennate diatom Phaeodactylum tricornutum, we describe our current understanding of the contribution of few epigenetic factors to diatoms biology. Further, short regulatory non-coding RNAs (ncRNAs) as well as long ncRNAs are described in light of recent research. We highlight future studies and directions with a focus on epigenomic editing and environmental epigenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5mC:

5-methylcytosine

ALKBH:

alpha-ketoglutarate-dependent hydroxylase

COLDAIR :

COLD ASSISTED INTRONIC NONCODING RNA

DCL:

Dicer endonuclease

DEXDc/Helicase:

Dead like helicase domain

DME:

DEMETER

DNA:

Deoxyribonucleic acid

DNMTs:

DNA methyltransferases

DUF:

Domain of unknown function

ENDO3c:

Endonuclease IIIc

FLC:

Flowering Locus C

HDACs:

Histone deacetylases

HDMs:

Histone demethylases

LncRNAs:

Long non-coding RNAs

miRNA:

micro RNAs

MMETSP:

Marine Microbial Eukaryote Transcriptome Project

PAZ:

Piwi-Argonaute-Zwille

PTMs:

Post-translational modifications of histones

RDRs:

RNA-dependent RNA polymerases

RID/DMTA:

RIP deficient/DNA methyltransferase activity

RIP:

Repeat-induced point mutation

RISC:

RNA-induced silencing complex

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SAM:

S-adenosyl-methionine

siRNA:

small interfering RNAs

SNF:

Sucrose non-fermentable

TEs:

Transposable elements

References

  • Agius F, Kapoor A, Zhu JK (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci U S A 103:11796–11801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J (2010) MEC-17 is an α-tubulin acetyltransferase. Nature 467:218–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Lebrun MH, Quesneville H (2015) Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. BMC Genomics 16:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bestor TH (1990) DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 326:179–187

    CAS  Google Scholar 

  • Bewick AJ, Hofmeister BT, Powers RA, Mondo SJ, Grigoriev IV, James TY, Stajich JE, Schmitz RJ (2019) Diversity of cytosine methylation across the fungal tree of life. Nat Ecol Evol 3:479–490

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian K, Lenz SAP, Tang Q, Chen F, Qi R, Jost M, Drennan CL, Essigmann JM, Wetmore SD, Li D (2019) DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Nucleic Acids Res 47:5522–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19:321–329

    Article  CAS  PubMed  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 110:33–42

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH, Sun HX, Bowler C, Chua NH (2016) Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. New Phytol 210:497–510

    Article  CAS  PubMed  Google Scholar 

  • Cuypers B et al (2020) The absence of C-5 DNA methylation in Leishmania donovani allows DNA enrichment from complex samples. Microorganisms. 8(8):1252. https://doi.org/10.3390/microorganisms8081252

    Article  CAS  PubMed Central  Google Scholar 

  • de Mendoza A, Bonnet A, Vargas-Landin DB, Ji N, Li H, Yang F, Li L, Hori K, Pflueger J, Buckberry S et al (2018) Recurrent acquisition of cytosine methyltransferases into eukaryotic retrotransposons. Nat Commun 9:1341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Mendoza A, Lister R, Bogdanovic O (2019) Evolution of DNA Methylome diversity in eukaryotes. J Mol Biol

    Google Scholar 

  • De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deschamps J, van Nes J (2005) Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132:2931–2942

    Article  CAS  PubMed  Google Scholar 

  • Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumesic PA, Stoddard CI, Catania S, Narlikar GJ, Madhani HD (2020) ATP hydrolysis by the SNF2 domain of Dnmt5 is coupled to both specific recognition and modification of Hemimethylated DNA. Mol Cell 79(127–139):e124

    Google Scholar 

  • Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5:a017780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan X, Han W, Teng L, Jiang P, Zhang X, Xu D, Li C, Pellegrini M, Wu C, Wang Y et al (2020) Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants. New Phytol 225:234–249

    Article  CAS  PubMed  Google Scholar 

  • Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frapporti A, Miro Pina C, Arnaiz O, Holoch D, Kawaguchi T, Humbert A, Eleftheriou E, Lombard B, Loew D, Sperling L et al (2019) The Polycomb protein Ezl1 mediates H3K9 and H3K27 methylation to repress transposable elements in paramecium. Nat Commun 10:2710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu D, Brophy JA, Chan CT, Atmore KA, Begley U, Paules RS, Dedon PC, Begley TJ, Samson LD (2010) Human AlkB homolog ABH8 is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol 30:2449–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    Article  CAS  PubMed  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladyshev E (2017) Repeat-induced point mutation and other genome defense mechanisms in fungi. Microbiol Spectr 5

    Google Scholar 

  • Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, Hsu CH, Aravind L, He C, Shi Y (2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Hepworth J, Dean C (2015) Flowering locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol 168:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y (2002) Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 30:1465–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang A, He L, Wang G (2011) Identification and characterization of microRNAs from Phaeodactylum tricornutum by high-throughput sequencing and bioinformatics analysis. BMC Genomics 12:337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Ding J, Gao K, Cruz de Carvalho MH, Tirichine L, Bowler C, Lin X (2018) A potential role for epigenetic processes in the acclimation response to elevated pCO2 in the model diatom Phaeodactylum tricornutum. Front Microbiol 9(3342)

    Google Scholar 

  • Huff JT, Zilberman D (2014) Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156:1286–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJ (1998) The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat Genet 19:192–195

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Zhang D, Aravind L (2016) Adenine methylation in eukaryotes: apprehending the complex evolutionary history and functional potential of an epigenetic modification. BioEssays 38:27–40

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, Nellen W, Schaefer M, Helm M (2017) Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol 14:1108–1123

    Article  PubMed  Google Scholar 

  • Kanchan S, Mehrotra R, Chowdhury S (2015) In silico analysis of the endonuclease III protein family identifies key residues and processes during evolution. J Mol Evol 81:54–67

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ et al (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M (2001) Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ–CBP fusion protein. EMBO J 20:7184–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein BJ, Jang SM, Lachance C, Mi W, Lyu J, Sakuraba S, Krajewski K, Wang WW, Sidoli S, Liu J et al (2019) Histone H3K23-specific acetylation by MORF is coupled to H3K14 acylation. Nat Commun 10:4724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  CAS  PubMed  Google Scholar 

  • Kohler C, Wolff P, Spillane C (2012) Epigenetic mechanisms underlying genomic imprinting in plants. Annu Rev Plant Biol 63:331–352

    Article  PubMed  CAS  Google Scholar 

  • Laisne M, Gupta N, Kirsh O, Pradhan S, Defossez PA (2018) Mechanisms of DNA methyltransferase recruitment in mammals. Genes (Basel) 9

    Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Zhang H, Gray MW (2008) RNA editing in dinoflagellates and its implications for the evolutionary history of the editing machinery. In: Smith HC (ed) RNA and DNA editing: molecular mechanisms and their integration into biological systems. Wiley, Boca Raton, FL, pp 280–309

    Chapter  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Gomollon S, Beckers M, Rathjen T, Moxon S, Maumus F, Mohorianu I, Moulton V, Dalmay T, Mock T (2014) Global discovery and characterization of small non-coding RNAs in marine microalgae. BMC Genomics 15:697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by dicer. Science 311:195–198

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, Grandbastien MA, Bowler C (2009) Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 10:624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31:1133–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishima Y, Miyagi S, Saraya A, Negishi M, Endoh M, Endo TA, Toyoda T, Shinga J, Katsumoto T, Chiba T (2011) The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood 118:2443–2453

    Article  CAS  PubMed  Google Scholar 

  • Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and sir protein association. Genes Dev 16:1518–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norden-Krichmar TM, Allen AE, Gaasterland T, Hildebrand M (2011) Characterization of the small RNA transcriptome of the diatom, Thalassiosira pseudonana. PLoS One 6:e22870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada S, Sutton A, Muster N, Brown CE, Yates JR 3rd, Sternglanz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15:3155–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponger L, Li WH (2005) Evolutionary diversification of DNA methyltransferases in eukaryotic genomes. Mol Biol Evol 22:1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Rastogi A (2016) Phaeodactylum tricornutum genome and epigenome: characterization of natural variants. PSL Research University, Paris

    Google Scholar 

  • Rastogi A, Lin X, Lombard B, Loew D, Tirichine L (2015) Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms. AIMS Genetics 2:173–191

    Article  Google Scholar 

  • Rastogi A, Maheswari U, Dorrell RG, Vieira FRJ, Maumus F, Kustka A, McCarthy J, Allen AE, Kersey P, Bowler C, Tirichine L (2018) Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Sci Rep 8:4834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogato A, Richard H, Sarazin A, Voss B, Cheminant Navarro S, Champeimont R, Navarro L, Carbone A, Hess WR, Falciatore A (2014) The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum. BMC Genomics 15:698

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schäfer C, Phalke S, Walther M, Schmidt A, Jenuwein T (2007) Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU (VAR) 3-3. Mol Cell 26:103–115

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi T, Nakajima K, Matsuda Y (2011) Identification of the UMP synthase gene by establishment of uracil auxotrophic mutants and the phenotypic complementation system in the marine diatom Phaeodactylum tricornutum. Plant Physiol 156:78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, Lewis ZA, Goll MG (2019) DNA methylation: shared and divergent features across eukaryotes. Trends Genet 35:818–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713

    Article  PubMed  PubMed Central  Google Scholar 

  • Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV (2010) The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci 107:21517–21522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha RP, Hildebrand M (2015) Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. Eukaryot Cell 14:29–40

    Article  PubMed  CAS  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    Article  CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  CAS  PubMed  Google Scholar 

  • Tirichine L, Lin X, Thomas Y, Lombard B, Loew D, Bowler C (2014) Histone extraction protocol from the two model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Mar Genomics 13:21–25

    Article  PubMed  Google Scholar 

  • Tirichine L, Rastogi A, Bowler C (2017) Recent progress in diatom genomics and epigenomics. Curr Opin Plant Biol 36:46–55

    Article  CAS  PubMed  Google Scholar 

  • Traller JC, Cokus SJ, Lopez DA, Gaidarenko O, Smith SR, McCrow JP, Gallaher SD, Podell S, Thompson M, Cook O et al (2016) Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype. Biotechnol Biofuels 9:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukada Y-i, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  PubMed  Google Scholar 

  • Veluchamy A, Lin X, Maumus F, Rivarola M, Bhavsar J, Creasy T, O’Brien K, Sengamalay NA, Tallon LJ, Smith AD et al (2013a) Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun 4

    Google Scholar 

  • Veluchamy A, Lin X, Maumus F, Rivarola M, Bhavsar J, Creasy T, O'Brien K, Sengamalay NA, Tallon LJ, Smith AD et al (2013b) Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun 4:2091

    Article  PubMed  CAS  Google Scholar 

  • Veluchamy A, Rastogi A, Lin X, Lombard B, Murik O, Thomas Y, Dingli F, Rivarola M, Ott S, Liu X et al (2015) An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum. Genome Biol 16:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Waddington CH (1957) The strategy of the genes. Macmillan, New York

    Google Scholar 

  • Wang L, Tang Y, Cole PA, Marmorstein R (2008) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Olson BG, Yao J (2016) DamID-seq: genome-wide mapping of protein-DNA interactions by high throughput sequencing of adenine-methylated DNA fragments. J Vis Exp. 107:e53620

    Google Scholar 

  • Zdzalik D, Vagbo CB, Kirpekar F, Davydova E, Puscian A, Maciejewska AM, Krokan HE, Klungland A, Tudek B, van den Born E, Falnes PO (2014) Protozoan ALKBH8 oxygenases display both DNA repair and tRNA modification activities. PLoS One 9:e98729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Rastogi A, Deton Cabanillas AF, Ait Mohamed O, Cantrel C, Lombard B, Murik O, Genovesio A, Bowler C, Bouyer D, Loew D, Lin X, Veluchamy A, Vieira FRJ, Tirichine L (2019) H3K27me3 natural variation selectively marks genes predicted to be important for differentiation in unicellular algae. bioRxiv. https://doi.org/10.1101/2019.12.26.888800

  • Zhao X, Rastogi A, Deton Cabanillas AF, Ait Mohamed O, Cantrel C, Lombard B, Murik O, Genovesio A, Bowler C, Bouyer D et al (2021) Genome wide natural variation of H3K27me3 selectively marks genes predicted to be important for cell differentiation in Phaeodactylum tricornutum. New Phytol 229:3208–3220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Tirichine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, X., Hoguin, A., Chaumier, T., Tirichine, L. (2022). Epigenetic Control of Diatom Genomes: An Overview from In Silico Characterization to Functional Studies. In: Falciatore, A., Mock, T. (eds) The Molecular Life of Diatoms. Springer, Cham. https://doi.org/10.1007/978-3-030-92499-7_7

Download citation

Publish with us

Policies and ethics