Skip to main content

Structure and Evolution of Diatom Nuclear Genes and Genomes

  • Chapter
  • First Online:
The Molecular Life of Diatoms

Abstract

Diatoms are one of the most successful eukaryotes. There are over 100,000 diatom species contributing nearly half of total algal abundance in the oceans. Diatoms have conquered almost all aquatic environments, with high abundance especially in coastal and polar oceans and inland waters. The first diatom genomes provided important insights into their genetic, metabolic, and morphological diversity, which is unmatched by any other algal class. However, the recent application of long-read sequencing in addition to population genomics and culture-independent approaches enables a step-change in our understanding of diatom genomes. This chapter synthesizes what we have learned about the structure and evolution of diatom nuclear genes and genomes since the genome of Thalassiosira pseudonana became available in 2004. We highlight some of the key findings and discuss mechanisms and drivers of diatom genome evolution and adaptation underpinning the success of the entire class. Considering that most of their genomic diversity is still unknown, large-scale genome projects and culture-independent methods such as metagenome-assembled and single-cell-amplified genomes hold great promise to reveal more of their inter- and intraspecific genomic diversity in an environmental context. Data from these studies will pave the way for novel insights into their genetic versatility, which will enable us to identify the key evolutionary innovations in diatoms, and their adaptive evolution to a wide variety of environments, including to some of the most extreme aquatic environments on Earth such as intertidal zones and polar oceans. These insights are not only critical for advancing diatom-based biotechnology and synthetic biology, but will also improve our knowledge about how the various diatom lineages perform their important roles as key players for capturing CO2 and as the foundation of diverse aquatic food webs, thus providing significant ecosystem services and maintaining the continued habitability on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAC :

Bacterial Artificial Chromosome

DAE :

Differential Allelic Expression

EGT :

Endosymbiotic Gene Transfer

GO :

Gene Ontology

HGT :

Horizontal Gene Transfer

ISIPs :

Iron Stress-Induced Proteins

JGI :

Joint Genome Institute

lincRNAs :

long intergenic non-coding RNAs

MAG:

Metagenome-assembled genome

MGT :

Metagenomics-based transcriptome

ncRNAs :

non-coding RNAs

ONT:

Oxford Nanopore Technology

ORF :

Open Reading Frame

PacBio:

Pacific Biosciences

PUFAs :

Polyunsaturated Fatty Acids

SAG:

Single-Amplified Genome

SMRT :

Single-Molecule Real-Time

sRNAs :

small non-coding RNAs

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mock, T. et al. (2022). Structure and Evolution of Diatom Nuclear Genes and Genomes. In: Falciatore, A., Mock, T. (eds) The Molecular Life of Diatoms. Springer, Cham. https://doi.org/10.1007/978-3-030-92499-7_5

Download citation

Publish with us

Policies and ethics