Skip to main content

An Ocean of Signals: Intracellular and Extracellular Signaling in Diatoms

  • 472 Accesses

Abstract

Diatoms are frequently exposed to diverse biotic and abiotic stressors, and they rely on sophisticated sensing mechanisms to perceive and respond accordingly to fluctuations in their environment. In order to convert diverse environmental cues into activation of specific signal transduction pathways, diatoms utilize an array of second messengers such as reactive oxygen species (ROS), nitric oxide (NO), calcium (Ca2+), and cyclic nucleotides (cAMP and cGMP). Specificity in signal transduction is achieved by precise spatiotemporal control of the level of second messengers, the specific combination of these molecules, and their available cellular targets. In addition to second messengers, diatoms utilize other chemical cues that are exuded by conspecifics and other organisms in their microenvironment. These molecules, named infochemicals, convey an essential information on the producer physiological state, and serve as a chemical language that mediates marine microbial interactions. These infochemicals have specific bioactivities, and some are toxic to competitors, grazers, or pathogens. The outcomes of this chemical communication highly depend on the context, and the same signal may lead to different cell fates. In some cases, chemical cues can even initiate a programmed cell death (PCD) cascade, which was suggested to contribute to the high turnover of phytoplankton and to be involved in bloom demise. In this chapter, we discuss the current knowledge regarding diatom extracellular and intracellular signaling, mainly during biotic interactions. In addition, we discuss how cellular processes that occur at the single-cell level may alter population dynamics and even large-scale biogeochemical processes. Finally, we propose future research directions that will shed light on the ecological importance of chemical communication in diatoms.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92499-7_22
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92499-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

DA:

Domoic acid

DD:

2E,4E/Z-decadienal

GSH:

Glutathione

NO:

Nitric oxide

NOS:

Nitric oxide synthases

PCD:

Programmed cell death

ROS:

Reactive oxygen species

roGFP:

redox sensitive GFP

References

  • Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13:497–508

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahner B a, Wei L, Oleson JR, Ogura N (2002) Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar Ecol Prog Ser 232:93–103

    CAS  CrossRef  Google Scholar 

  • Aline RF, Reeves CD, Russo AF, Volcani BE (1984) Role of silicon in diatom metabolism: cyclic nucleotide levels, nucleotide cyclase, and phosphodiesterase activities during synchronized growth of Cylindrotheca fusiformis. Plant Physiol 76:674–679

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Allen AE, La Roche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci 105:10438–10443

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Amato A, Sabatino V, Nylund GM, Bergkvist J, Basu S, Andersson MX, Sanges R, Godhe A, Kiørboe T, Selander E et al (2018) Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi. ISME J 12:1594–1604

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Amin S a, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B et al (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101

    CAS  PubMed  CrossRef  Google Scholar 

  • Armbrecht LH, Smetacek V, Assmy P, Klaas C (2014) Cell death and aggregate formation in the giant diatom Coscinodiscus wailesii (Gran & Angst, 1931). J Exp Mar Biol Ecol 452:31–39

    CrossRef  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192

    CAS  PubMed  CrossRef  Google Scholar 

  • Assmy P, Smetacek V, Montresor M, Klaas C, Henjes J, Strass VH, Arrieta JM, Bathmann U, Berg GM, Breitbarth E et al (2013) Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc Natl Acad Sci U S A 110:20633–20638

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Francès V, Wendehenne D (2020) Nitric oxide production and signalling in algae. J Exp Bot. https://doi.org/10.1080/00498254.2020.1737890

  • Bailleul B, Berne N, Murik O, Petroutsos D, Prihoda J, Tanaka A, Villanova V, Bligny R, Flori S, Falconet D et al (2015) Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524:366–369

    CAS  PubMed  CrossRef  Google Scholar 

  • Balaban NQ (2011) Persistence: Mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21:768–775

    CAS  PubMed  CrossRef  Google Scholar 

  • Bargu S, Lefebvre K, Silver M (2006) Effect of dissolved domoic acid on the grazing rate of krill Euphasia pacifica. Mar Ecol Prog Ser 312:169–175

    CAS  CrossRef  Google Scholar 

  • Barofsky A, Pohnert G (2007) Biosynthesis of Polyunsaturated short chain aldehydes in the Diatom Thalassiosira rotula. Org Lett 9:1017–1020

    CAS  PubMed  CrossRef  Google Scholar 

  • Barofsky A, Vidoudez C, Pohnert G (2009) Metabolic profiling reveals growth stage variability in diatom exudates. Limnol Oceanogr Methods 7:382–390

    CAS  CrossRef  Google Scholar 

  • La Barre S, Bates SS, Quilliam MA (2014) Domoic acid. In: Outstanding marine molecules. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 189–216

    CrossRef  Google Scholar 

  • Basu S, Patil S, Mapleson D, Russo MT, Vitale L, Fevola C, Maumus F, Casotti R, Mock T, Caccamo M et al (2017) Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytol. https://doi.org/10.1111/nph.14557

  • Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP (2018) Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae 79:3–43

    PubMed  CrossRef  Google Scholar 

  • Baumeister TUH, Vallet M, Kaftan F, Svatoš A, Pohnert G (2019) Live Single-cell metabolomics with matrix-free laser/desorption ionization mass spectrometry to address microalgal physiology. Front Plant Sci 10:1–9

    CrossRef  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3:710–717

    CAS  PubMed  CrossRef  Google Scholar 

  • Behrendt L, Salek MM, Trampe EL, Fernandez VI, Lee KS, Kühl M, Stocker R (2020) PhenoChip: A single-cell phenomic platform for high-throughput photophysiological analyses of microalgae. Sci Adv 6:eabb2754

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277

    CrossRef  Google Scholar 

  • Berges JA, Falkowski PG (1998) Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr 43:129–135

    CAS  CrossRef  Google Scholar 

  • Bergkvist J, Thor P, Jakobsen HH, Wängberg S-Å, Selander E (2012) Grazer-induced chain length plasticity reduces grazing risk in a marine diatom. Limnol Oceanogr 57:318–324

    CrossRef  Google Scholar 

  • Berman-Frank I, Rosenberg G, Levitan O, Haramaty L, Mari X (2007) Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium. Environ Microbiol 9:1415–1422

    CAS  PubMed  CrossRef  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    CAS  PubMed  CrossRef  Google Scholar 

  • Bidle KD (2015) The molecular ecophysiology of programmed cell death in marine phytoplankton. Annu Rev Mar Sci 7:341–375

    CrossRef  Google Scholar 

  • Bidle KD (2016) Programmed Cell death in unicellular phytoplankton. Curr Biol 26:R594–R607

    CAS  PubMed  CrossRef  Google Scholar 

  • Bidle KD, Bender SJ (2008) Iron Starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot Cell 7:223–236

    CAS  PubMed  CrossRef  Google Scholar 

  • Bilcke G, Van den Berge K, De Decker S, Bonneure E, Poulsen N, Bulankova P, Osuna-Cruz CM, Dickenson J, Sabbe K, Pohnert G et al (2020) Mating type specific transcriptomic response to sex inducing pheromone in the pennate diatom Seminavis robusta. ISME J 15:0–27

    Google Scholar 

  • Blanco E, Fortunato S, Viggiano L, de Pinto MC (2020) Cyclic AMP: A Polyhedral Signalling Molecule in Plants. Int J Mol Sci 21:4862

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Bondoc KGV, Lembke C, Lang SN, Germerodt S, Schuster S, Vyverman W, Pohnert G (2019) Decision-making of the benthic diatom Seminavis robusta searching for inorganic nutrients and pheromones. ISME J 13:537–546

    CAS  PubMed  CrossRef  Google Scholar 

  • Bonnet S, Berthelot H, Turk-Kubo K, Cornet-Barthaux V, Fawcett S, Berman-Frank I, Barani A, Grégori G, Dekaezemacker J, Benavides M et al (2016) Diazotroph derived nitrogen supports diatom growth in the South West Pacific: A quantitative study using nanoSIMS. Limnol Oceanogr 61:1549–1562

    CrossRef  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    CAS  PubMed  CrossRef  Google Scholar 

  • Bozhkov PV, Salvesen G (2014) Caspases, paracaspases, and metacaspases. Springer

    CrossRef  Google Scholar 

  • Van Breusegem F, Dat J (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Brown ER, Cepeda MR, Mascuch SJ, Poulson-Ellestad KL, Kubanek J (2018) Chemical ecology of the marine plankton. Nat Prod Rep 36:1093–1116

    CrossRef  Google Scholar 

  • Brunson JK, McKinnie SMK, Chekan JR, McCrow JP, Miles ZD, Bertrand EM, Bielinski VA, Luhavaya H, Oborník M, Smith GJ et al (2018) Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science (80-) 361:1356–1358

    CAS  CrossRef  Google Scholar 

  • Brussaard CPD, Noordeloos AAM, Riegman R (1997) Autolysis kinetics of the marine diatom Ditylum brightwellii (bacillariophyceae) under nitrogen and phosphorus limitation and starvation. J Phycol 33:980–987

    CrossRef  Google Scholar 

  • Campbell K, Herrera-Dominguez L, Correia-Melo C, Zelezniak A, Ralser M (2018) Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr Opin Syst Biol 8:97–108

    CrossRef  Google Scholar 

  • Carafoli E (2003) The calcium-signalling saga: Tap water and protein crystals. Nat Rev Mol Cell Biol 4:326–332

    CAS  PubMed  CrossRef  Google Scholar 

  • Carrara F, Sengupta A, Behrendt L, Vardi A, Stocker R (2021) Bistability in oxidative stress response determines the migration behavior of phytoplankton in turbulence. Proc Natl Acad Sci 118:e2005944118. https://doi.org/10.1101/2020.04.28.064980

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Casotti R, Mazza S, Brunet C, Vantrepotte V, Ianora A, Miralto A (2005) Growth inhibition and toxicity of the diatom aldehyde 2- trans, 4- trans -decadienal on Thalassiosira Weissflogii (Bacillariophyceae). J Phycol 41:7–20

    CAS  CrossRef  Google Scholar 

  • Choi CJ, Berges JA (2013) New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis 4:e490

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chung C, Hwang SL, Chang J (2005) Cooccurrence of ScDSP Gene Expression, Cell Death, and DNA Fragmentation in a Marine Diatom, Skeletonema costatum. Society 71:8744–8751

    CAS  Google Scholar 

  • Chung C-C, Hwang S-PL, Chang J (2008) Nitric oxide as a signaling factor to upregulate the death-specific protein in a marine diatom, Skeletonema costatum, during blockage of electron flow in photosynthesis. Appl Environ Microbiol 74:6521–6527

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cirri E, Vyverman W, Pohnert G (2018) Biofilm interactions-bacteria modulate sexual reproduction success of the diatom Seminavis robusta. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy161

  • Cirri E, De Decker S, Bilcke G, Werner M, Osuna-Cruz CM, De Veylder L, Vandepoele K, Werz O, Vyverman W, Pohnert G (2019) Associated bacteria affect sexual reproduction by altering gene expression and metabolic processes in a biofilm inhabiting diatom. Front Microbiol 10:1–20

    CrossRef  Google Scholar 

  • Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12:115–124

    CAS  PubMed  CrossRef  Google Scholar 

  • Cooksey KE (1981) Requirement for calcium in adhesion of a fouling diatom to glass. Appl Environ Microbiol 41:1378–1382

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cooksey B, Cooksey KE (1980) Calcium is necessary for motility in the diatom Amphora coffeaeformis. Plant Physiol 65:129–131

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P (1994) Programmed cell death in Dictyostelium. J Cell Sci 107:2691–2704

    CAS  PubMed  CrossRef  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    PubMed  CrossRef  CAS  Google Scholar 

  • d’Ippolito G, Nuzzo G, Sardo A, Manzo E, Gallo C, Fontana A (2018) Lipoxygenases and lipoxygenase products in marine diatoms. In: Methods in enzymology, 1st edn. Elsevier Inc., pp 69–100

    Google Scholar 

  • Dashkova V, Malashenkov D, Poulton N, Vorobjev I, Barteneva NS (2017) Imaging flow cytometry for phytoplankton analysis. Methods 112:188–200

    CAS  PubMed  CrossRef  Google Scholar 

  • Di Dato V, Musacchia F, Petrosino G, Patil S, Montresor M, Sanges R, Ferrante MI (2015) Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms. Sci Rep 5:12329

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Diaz JM, Plummer S (2018) Production of extracellular reactive oxygen species by phytoplankton: past and future directions. J Plankton Res 40:655–666

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Diaz JM, Hansel CM, Voelker BM, Mendes CM, Andeer PF, Zhang T (2013) Widespread production of extracellular superoxide by heterotrophic bacteria. Science (80-) 340:1223–1226

    CAS  CrossRef  Google Scholar 

  • Diaz JM, Plummer S, Hansel CM, Andeer PF, Saito MA, McIlvin MR (2019) NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom Thalassiosira oceanica. Proc Natl Acad Sci 116:16448–16453

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dietz K-J, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Douglas DJ, Ramsey UP, Walter JA, Wright JLC (1992) Biosynthesis of the neurotoxin domoic acid by the marine diatom Nitzschia pungens forma mulfiseries, determined with [13C]-labelled precursors and nuclear magnetic resonance. J Chem Soc Chem Commun:714–716

    Google Scholar 

  • Dunker S, Boho D, Wäldchen J, Mäder P (2018) Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecol 18:51

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dupont CL, Goepfert TJ, Lo P, Wei L, Ahner B, a. (2004) Diurnal cycling of glutathione in marine phytoplankton: Field and culture studies. Limnol Oceanogr 49:991–996

    CAS  CrossRef  Google Scholar 

  • Durand PM, Sym S, Michod RE (2016) Programmed cell death and complexity in microbial systems. Curr Biol 26:R587–R593

    CAS  PubMed  CrossRef  Google Scholar 

  • Durand PM, Barreto Filho MM, Michod RE (2019) Cell death in evolutionary transitions in individuality. Yale J Biol Med 92:651–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K (2019) Cyclic nucleotide gated channels (CNGCs) in plant signalling—Current knowledge and perspectives. J Plant Physiol 241:153035

    CAS  PubMed  CrossRef  Google Scholar 

  • Faktorová D, Nisbet RER, Robledo JAF, Barbrook AC, Beardslee P, Bender S, Booth DS (2020) Genetic tool development in marine protists: Emerging model organisms for experimental cell biology. Nat Methods 17:481–494

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Falciatore A, D’Alcala MR, Croot P, Bowler C (2000) Perception of environmental signals by a marine diatom. Science (80-) 288:2363–2366

    CAS  CrossRef  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science (80-) 281:237–240

    CAS  CrossRef  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50

    CAS  PubMed  CrossRef  Google Scholar 

  • Flori S, Jouneau P-H, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O, Eicke S, Schober A, Bártulos CR et al (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8:15885

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Flynn KJ, Irigoien X (2009) Aldehyde-induced insidious effects cannot be considered as a diatom defence mechanism against copepods. Mar Ecol Prog Ser 377:79–89

    CrossRef  Google Scholar 

  • Fontana A, D’Ippolito G, Cutignano A, Miralto A, Ianora A, Romano G, Cimino G (2007a) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:481–490

    CAS  CrossRef  Google Scholar 

  • Fontana A, D’Ippolito G, Cutignano A, Romano G, Lamari N, Gallucci AM, Cimino G, Miralto A, Lanora A (2007b) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem 8:1810–1818

    CAS  PubMed  CrossRef  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484–1493

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Foyer C, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964

    CAS  PubMed  CrossRef  Google Scholar 

  • Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14

    CrossRef  Google Scholar 

  • Franzè G, Pierson JJ, Stoecker DK, Lavrentyev PJ (2018) Diatom-produced allelochemicals trigger trophic cascades in the planktonic food web. Limnol Oceanogr 63:1093–1108

    CrossRef  CAS  Google Scholar 

  • Gallina A, Brunet C, Palumbo A, Casotti R (2014) The effect of polyunsaturated aldehydes on Skeletonema marinoi (Bacillariophyceae): the involvement of reactive oxygen species and nitric oxide. Mar Drugs 12:4165–4187

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gallina AA, Palumbo A, Casotti R, Raven J (2016) Oxidative pathways in response to polyunsaturated aldehydes in the marine diatom Skeletonema marinoi (Bacillariophyceae). J Phycol 52:590–598

    CAS  PubMed  CrossRef  Google Scholar 

  • Gallo C, D’Ippolito G, Nuzzo G, Sardo A, Fontana A (2017) Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat Commun 8:1292

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Godhe A, Rynearson T (2017) The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos Trans R Soc B Biol Sci 372:20160399

    CrossRef  Google Scholar 

  • Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL (2017) Regulated forms of cell death in fungi. Front Microbiol 8:1837

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Graff van Creveld S (2018) The role of redox in cell fate regulation in marine diatom’s response to environmental stresses. Weizmann Institute of Science

    Google Scholar 

  • Graff van Creveld S, Rosenwasser S, Schatz D, Koren I, Vardi A (2015) Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME J 9:385–395

    CrossRef  CAS  Google Scholar 

  • Graff van Creveld S, Rosenwasser S, Levin Y, Vardi A (2016) Chronic iron limitation confers transient resistance to oxidative stress in marine diatoms. Plant Physiol 172:968–979

    PubMed  PubMed Central  Google Scholar 

  • Graff van Creveld S, Ben-dor S, Mizrachi A, Alcolombri U, Hopes A, Mock T et al (2021) Biochemical characterization of a novel redox-regulated metacaspase in a marine diatom. Front Microbiol. https://doi.org/10.3389/fmicb.2021.688199

  • Grebner W, Berglund EC, Berggren F, Eklund J, Harðadóttir S, Andersson MX, Selander E (2019) Induction of defensive traits in marine plankton—new copepodamide structures. Limnol Oceanogr 64:820–831

    CAS  CrossRef  Google Scholar 

  • Harada H, Nakatsuma D, Ishida M, Matsuda Y (2005) Regulation of the expression of intracellular β-carbonic anhydrase in response to CO2 and light in the marine diatom Phaeodactylum tricornutum. Plant Physiol 139:1041–1050

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Harada H, Nakajima K, Sakaue K, Matsuda Y (2006) CO2 sensing at ocean surface mediated by cAMP in a marine diatom. Plant Physiol 142:1318–1328

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Harðardóttir S, Wohlrab S, Hjort DM, Krock B, Nielsen TG, John U, Lundholm N (2019) Transcriptomic responses to grazing reveal the metabolic pathway leading to the biosynthesis of domoic acid and highlight different defense strategies in diatoms. BMC Mol Biol 20:7

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Helliwell KE, Chrachri A, Koester JA, Wharam S, Verret F, Taylor AR, Wheeler GL, Brownlee C (2019) Alternative mechanisms for fast Na+/Ca2+ signaling in eukaryotes via a novel class of single-domain voltage-gated channels. Curr Biol 29:1–9

    CrossRef  CAS  Google Scholar 

  • Hennon GMM, Ashworth J, Groussman RD, Berthiaume C, Morales RL, Baliga NS, Orellana MV, Armbrust EV (2015) Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nat Clim Chang 5:761–765

    CAS  CrossRef  Google Scholar 

  • Hernando M, Ferreyra GA, Schloss IR, Malanga G, Aguiar MB, Almandoz GO, Puntarulo S (2015) Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition. J Exp Mar Biol Ecol 466:110–119

    CAS  CrossRef  Google Scholar 

  • Heuschele J, Selander E (2014) The chemical ecology of copepods. J Plankton Res 36:895–913

    CrossRef  Google Scholar 

  • Hill SM, Nyström T (2015) The dual role of a yeast metacaspase: What doesn’t kill you makes you stronger. BioEssays 37:1–7

    CAS  CrossRef  Google Scholar 

  • Hirsh DJ, Schieler BM, Fomchenko KM, Jordan ET, Bidle KD (2016) A liposome-encapsulated spin trap for the detection of nitric oxide. Free Radic Biol Med 96:199–210

    CAS  PubMed  CrossRef  Google Scholar 

  • Ianora A, Miralto A, Poulet SA, Carotenuto Y, Buttino I, Romano G, Casotti R, Pohnert G, Wichard T, Colucci-D’Amato L et al (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407

    CAS  PubMed  CrossRef  Google Scholar 

  • Islam S, Sabharwal T, Wu S, Bullock TJ, Mehdy MC (2020) Early dynamics of photosynthetic Lhcf2 and Lhcf15 transcription and mRNA stabilities in response to herbivory-related decadienal in Phaeodactylum tricornutum. Sci Rep 10:2029

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Janknegt PJ, van de Poll WH, Visser RJW, Rijstenbil JW, Buma AGJ (2008) Oxidative Stress Responses in the Marine Antarctic Diatom Chaetoceros Brevis (Bacillariophyceae) During Photoacclimation. J Phycol 44:957–966

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson MD, Edwards BR, Beaudoin DJ, Van Mooy BAS, Vardi A (2019) Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environ Microbiol 22:629–645

    PubMed  CrossRef  CAS  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Physiol 295:C849–C868

    CAS  CrossRef  Google Scholar 

  • Jones DP (2010) Redox sensing: orthogonal control in cell cycle and apoptosis signalling. J Intern Med 268:432–448

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jorgensen I, Rayamajhi M, Miao EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17:151–164

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kahl L, Vardi A, Schofield O (2008) Effects of phytoplankton physiology on export flux. Mar Ecol Prog Ser 354:3–19

    CAS  CrossRef  Google Scholar 

  • Kamp A, de Beer D, Nitsch JL, Lavik G, Stief P (2011) Diatoms respire nitrate to survive dark and anoxic conditions. Proc Natl Acad Sci U S A 108:5649–5654

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kennedy F, Martin A, McMinn A (2020) Insights into the production and role of nitric oxide in the Antarctic sea‐ice diatom Fragilariopsis cylindrus. J Phycol 56(5):1196–1207

    CAS  PubMed  CrossRef  Google Scholar 

  • Kitchen SA, Bourdelais AJ, Taylor AR (2018) Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom. PeerJ 6:e4533

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kodama M, Doucette GJ, Green DH (2006) Relationships between bacteria and harmful algae. In: Ecology of Harmful Algae. Springer, Berlin Heidelberg, pp 243–255

    CrossRef  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA et al (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12:1463–1467

    CAS  PubMed  CrossRef  Google Scholar 

  • Ku C, Sheyn U, Sebé-pedrós A, Ben-dor S, Schatz D, Tanay A, Rosenwasser S, Vardi A (2020) A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci Adv 6:eaba4137

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43

    CAS  PubMed  CrossRef  Google Scholar 

  • Kumar A, Castellano I, Patti FP, Palumbo A, Buia MC (2015) Nitric oxide in marine photosynthetic organisms. Nitric Oxide 47:34–39

    CAS  PubMed  CrossRef  Google Scholar 

  • Lam E, Zhang Y (2012) Regulating the reapers: Activating metacaspases for programmed cell death. Trends Plant Sci 17:487–494

    CAS  PubMed  CrossRef  Google Scholar 

  • Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: role of polyunsaturated aldehydes and precursors. New Phytol 184:794–805

    CAS  PubMed  CrossRef  Google Scholar 

  • Legrand C, Rengefors K, Fistarol G, Graneli E (2003) Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42:406–419

    CrossRef  Google Scholar 

  • Lelong A, Hégaret H, Soudant P (2011) Cell-based measurements to assess physiological status of Pseudo-nitzschia multiseries, a toxic diatom. Res Microbiol 162:969–981

    PubMed  CrossRef  Google Scholar 

  • Lelong A, Hégaret H, Soudant P, Bates SS (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51:168–216

    CAS  CrossRef  Google Scholar 

  • Lin PPC, Volcani BE (1989) Novel adenosine 3’,5’-cyclic monophosphate dependent protein kinases in a marine diatom. Biochemistry 28:6624–6631

    CAS  CrossRef  Google Scholar 

  • Liu W, Ming Y, Huang Z, Li P (2012) Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages. Plant Physiol Biochem 60:165–170

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu Q, Tang X, Wang Y, Yang Y, Zhang W, Zhao Y, Zhang X (2019) ROS changes are responsible for tributyl phosphate (TBP)-induced toxicity in the alga Phaeodactylum tricornutum. Aquat Toxicol 208:168–178

    CAS  PubMed  CrossRef  Google Scholar 

  • Lundholm N, Krock B, John U, Skov J, Cheng J, Pančić M, Wohlrab S, Rigby K, Nielsen TG, Selander E et al (2018) Induction of domoic acid production in diatoms—Types of grazers and diatoms are important. Harmful Algae 79:64–73

    CAS  PubMed  CrossRef  Google Scholar 

  • Luo C, Liang J, Lin Q, Li C, Bowler C, Anderson DM, Wang P, Wang X, Gao Y (2014) Cellular Responses Associated with ROS Production and Cell Fate Decision in Early Stress Response to Iron Limitation in the Diatom Thalassiosira pseudonana. J Proteome Res 13:5510–5523

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Luostarinen T, Ribeiro S, Weckström K, Sejr M, Meire L, Tallberg P, Heikkilä M (2020) An annual cycle of diatom succession in two contrasting Greenlandic fjords: from simple sea-ice indicators to varied seasonal strategists. Mar Micropaleontol 158:103108

    Google Scholar 

  • Maheswari U, Jabbari K, Petit J-L, Porcel BM, Allen AE, Cadoret J-P, De Martino A, Heijde M, Kaas R, La Roche J et al (2010) Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biol 11:R85

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Maibam C, Fink P, Romano G, Buia MC, Gambi MC, Scipione MB, Patti FP, Lorenti M, Butera E, Zupo V (2014) Relevance of wound-activated compounds produced by diatoms as toxins and infochemicals for benthic invertebrates. Mar Biol 161:1639–1652

    CAS  CrossRef  Google Scholar 

  • Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, Wincker P, Iudicone D, de Vargas C, Bittner L et al (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci 113:E1516–E1525

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Marshall J-A, Ross T, Pyecroft S, Hallegraeff G (2005) Superoxide production by marine microalgae. Mar Biol 147:541–549

    CAS  CrossRef  Google Scholar 

  • De Martino A, Bartual A, Willis A, Meichenin A, Villazán B, Maheswari U, Bowler C (2011) Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum. Protist 162:462–481

    PubMed  CrossRef  Google Scholar 

  • Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mathis R, Ackermann M (2016) Response of single bacterial cells to stress gives rise to complex history dependence at the population level. Proc Natl Acad Sci 113:4224–4229

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Matsuda Y, Nakajima K, Tachibana M (2011) Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res 109:191–203

    CAS  PubMed  CrossRef  Google Scholar 

  • McLachlan DH, Underwood GJC, Taylor AR, Brownlee C (2012) Calcium release from intracellular stores is necessary for the photophobic response in the benthic diatom Navicula perminuta (bacillariophyceae)1. J Phycol 48:675–681

    CAS  PubMed  CrossRef  Google Scholar 

  • Meyer N, Rettner J, Werner M, Werz O, Pohnert G (2018) Algal oxylipins mediate the resistance of diatoms against algicidal bacteria. Mar Drugs 16:486

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazzarella G, Laablr M, Cabrini M et al (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    CAS  CrossRef  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    CAS  PubMed  CrossRef  Google Scholar 

  • Mizrachi A, Graff van Creveld S, Shapiro OH, Rosenwasser S, Vardi A (2019) Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom. Elife. https://doi.org/10.7554/eLife.47732

  • Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V, Van den Berge K, Bouillon B, Huysman MJJ, De Decker S, Scharf J et al (2016) A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 6:19252

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mukherjee D, Gupta S, Saran N, Datta R, Ghosh A (2017) Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: dual roles for Ustilago maydis metacaspase Mca1. Mol Microbiol 106:815–831

    CAS  PubMed  CrossRef  Google Scholar 

  • Murik O, Elboher A, Kaplan A (2014) Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. New Phytol 202:471–484

    CAS  PubMed  CrossRef  Google Scholar 

  • Nelson DM, Tréguer P, Brzezinski M a, Leynaert A, Quéguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9:359

    CAS  CrossRef  Google Scholar 

  • Newton AC, Bootman MD, Scott J (2016) Second messengers. Cold Spring Harb Perspect Biol 8:1–14

    CrossRef  CAS  Google Scholar 

  • Nuzzo G, Gallo C, D’Ippolito G, Manzo E, Ruocco N, Russo E, Carotenuto Y, Costantini M, Zupo V, Sardo A et al (2018) UPLC–MS/MS identification of sterol sulfates in marine diatoms. Mar Drugs 17:10

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Oda T, Moritomi J, Kawano I, Hamaguchi S, Ishimatsu A, Muramatsu T (1995) Catalase- and superoxide dismutase-induced morphological changes and growth inhibition in the red tide phytoplankton chattonella marina. Biosci Biotechnol Biochem 59:2044–2048

    CAS  CrossRef  Google Scholar 

  • Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, Matsuda Y (2012) CO 2 -cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-Like basic zipper domain in the marine diatom Phaeodactylum tricornutum. Plant Physiol 158:499–513

    CAS  PubMed  CrossRef  Google Scholar 

  • Olofsson M, Kourtchenko O, Zetsche E-M, Marchant HK, Whitehouse MJ, Godhe A, Ploug H (2019) High single-cell diversity in carbon and nitrogen assimilations by a chain-forming diatom across a century. Environ Microbiol 21:142–151

    CAS  PubMed  CrossRef  Google Scholar 

  • Olson MB, Lessard EJ (2010) The influence of the Pseudo-nitzschia toxin, domoic acid, on microzooplankton grazing and growth: A field and laboratory assessment. Harmful Algae 9:540–547

    CAS  CrossRef  Google Scholar 

  • Orefice I, Lauritano C, Procaccini G, Ianora A, Romano G (2015) Insights into possible cell-death markers in the diatom Skeletonema marinoi in response to senescence and silica starvation. Mar Genomics 24:81–88

    PubMed  CrossRef  Google Scholar 

  • Papagiannakis A, Niebel B, Wit EC, Heinemann M (2017) Autonomous metabolic oscillations robustly gate the early and late cell cycle. Mol Cell 65:285–295

    CAS  PubMed  CrossRef  Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645

    CAS  PubMed  CrossRef  Google Scholar 

  • Pelusi A, De Luca P, Manfellotto F, Thamatrakoln K, Bidle KD, Montresor M (2020a) Virus‐induced spore formation as a defense mechanism in marine diatoms. New Phytol. https://doi.org/10.1111/nph.16951

  • Pelusi A, Margiotta F, Passarelli A, Ferrante MI, D’Alcalà MR, Montresor M (2020b) Density-dependent mechanisms regulate spore formation in the diatom Chaetoceros socialis. Limnonology Oceanogr Lett 5:371–378

    CrossRef  Google Scholar 

  • Pierella Karlusich JJ, Ibarbalz FM, Bowler C (2020) Phytoplankton in the Tara Ocean. Annu Rev Mar Sci 12:233–265

    CrossRef  Google Scholar 

  • Pohnert G (2002) Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant Physiol 129:103–111

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    CAS  PubMed  CrossRef  Google Scholar 

  • Pohnert G, Lumineau O, Cueff A (2002) Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods? Mar Ecol Prog Ser 245:33–45

    CAS  CrossRef  Google Scholar 

  • van de Poll WH, Alderkamp A-C, Janknegt PJ, Roggeveld J, Buma AGJ (2006) Photoacclimation modulates excessive photosynthetically active and ultraviolet radiation effects in a temperate and an Antarctic marine diatom. Limnol Oceanogr 51:1239–1248

    CrossRef  Google Scholar 

  • Prince E, Irmer F, Pohnert G (2013) Domoic acid improves the competitive ability of Pseudo-nitzschia delicatissima against the Diatom Skeletonema marinoi. Mar Drugs 11:2398–2412

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Radzinski M, Fassler R, Yogev O, Breuer W, Shai N, Gutin J, Ilyas S, Geffen Y, Tsytkin-Kirschenzweig S, Nahmias Y, et al (2018) Temporal profiling of redox-dependent heterogeneity in single cells. Elife. https://doi.org/10.7554/eLife.37623

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ribalet F, Wichard T, Pohnert G, Ianora A, Miralto A, Casotti R (2007) Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68:2059–2067

    CAS  PubMed  CrossRef  Google Scholar 

  • Rijstenbil J (2001) Effects of periodic, low UVA radiation on cell characteristics and oxidative stress in the marine planktonic diatom Ditylum brightwellii. Eur J Phycol:37–41

    Google Scholar 

  • Rijstenbil JW (2002) Assessment of oxidative stress in the planktonic diatom Thalassiosira pseudonana in response to UVA and UVB radiation. J Plankton Res 24:1277–1288

    CAS  CrossRef  Google Scholar 

  • Rijstenbil JW (2005) UV- and salinity-induced oxidative effects in the marine diatom Cylindrotheca closterium during simulated emersion. Mar Biol 147:1063–1073

    CAS  CrossRef  Google Scholar 

  • Rijstenbil J, Wijnholds J (1996) HPLC analysis of nonprotein thiols in planktonic diatoms : pool size, redox state and response to copper and cadmium exposure. Mar Biol 127:45–54

    CAS  CrossRef  Google Scholar 

  • Rocha PRF, Silva AD, Godinho L, Dane W, Estrela P, Vandamme LKJ, Pereira-Leal JB, de Leeuw DM, Leite RB (2018) Collective electrical oscillations of a diatom population induced by dark stress. Sci Rep 8:5484

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Rosenwasser S, Graff van Creveld S, Schatz D, Malitsky S, Tzfadia O, Aharoni A, Levin Y, Gabashvili A, Feldmesser E, Vardi A (2014) Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc Natl Acad Sci U S A 111:2740–2745

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rosenwasser S, Sheyn U, Frada MJ, Pilzer D, Rotkopf R, Vardi A (2019) Unmasking cellular response of a bloom-forming alga to viral infection by resolving expression profiles at a single-cell level. PLoS Pathog 15:e1007708

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sabharwal T, Sathasivan K, Mehdy MC (2017) Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum. PLoS One 12:e0178761

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Sanyal A, Larsson J, van Wirdum F, Andrén T, Moros M, Lönn M, Andrén E (2021) Not dead yet: diatom resting spores can survive in nature for several millennia. Am J Bot. https://doi.org/10.1002/ajb2.1780. Epub ahead of print. PMID: 34648178

  • Schneider RJ, Roe KL, Hansel CM, Voelker BM (2016) Species-level variability in extracellular production rates of reactive oxygen species by diatoms. Front Chem. https://doi.org/10.3389/fchem.2016.00005

  • Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, Küpper FC, Gleason FH (2016) Zoosporic parasites infecting marine diatoms—A black box that needs to be opened. Fungal Ecol 19:59–76

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Scholz B, Küpper F, Vyverman W, Ólafsson H, Karsten U (2017) Chytridiomycosis of marine diatoms—the role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar Drugs 15:26

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, Ackermann M (2016) Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol 1:16055

    CAS  PubMed  CrossRef  Google Scholar 

  • Selander E, Kubanek J, Hamberg M, Andersson MX, Cervin G, Pavia H (2015) Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci 112:6395–6400

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Selander E, Heuschele J, Nylund GM, Pohnert G, Pavia H, Bjærke O, Pender-Healy LA, Tiselius P, Kiørboe T (2016) Solid phase extraction and metabolic profiling of exudates from living copepods. PeerJ 4:e1529

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Selander E, Berglund EC, Engström P, Berggren F, Eklund J, Harðardóttir S, Lundholm N, Grebner W, Andersson MX (2019) Copepods drive large-scale trait-mediated effects in marine plankton. Sci Adv 5:eaat5096

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sengupta A, Carrara F, Stocker R (2017) Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543:555–558

    CAS  PubMed  CrossRef  Google Scholar 

  • Seymour JR, Amin SA, Raina J-B, Stocker R (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol 2:17065

    CAS  PubMed  CrossRef  Google Scholar 

  • Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, Arnoux M, Drou N, Santos MP, Gunsalus KC et al (2020) Diatom modulation of microbial consortia through use of two unique secondary metabolites. Proc Natl Acad Sci 117:1–55

    CrossRef  CAS  Google Scholar 

  • Şimşek E, Kim M (2018) The emergence of metabolic heterogeneity and diverse growth responses in isogenic bacterial cells. ISME J. https://doi.org/10.1038/s41396-017-0036-2

  • Sison-Mangus MP, Jiang S, Tran KN, Kudela RM (2014) Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J 8:63–76

    CAS  PubMed  CrossRef  Google Scholar 

  • Smetacek VS (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251

    CrossRef  Google Scholar 

  • Stock F, Bilcke G, De Decker S, Osuna-Cruz CM, Van den Berge K, Vancaester E, De Veylder L, Vandepoele K, Mangelinckx S, Vyverman W (2020) Distinctive growth and transcriptional changes of the diatom Seminavis robusta in response to quorum sensing related compounds. Front Microbiol 11:1–14

    CrossRef  Google Scholar 

  • Stocker R (2012) Marine microbes see a sea of gradients. Science (80-) 338:628–633

    CAS  CrossRef  Google Scholar 

  • Su TT (2020) Non-apoptotic roles of apoptotic proteases: new tricks for an old dog. Open Biol 10:200130

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sutherland KM, Wankel SD, Hansel CM (2020) Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proc Natl Acad Sci U S A 117:3433–3439

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Syrpas M, Ruysbergh E, Blommaert L, Vanelslander B, Sabbe K, Vyverman W, De Kimpe N, Mangelinckx S (2014) Haloperoxidase mediated quorum quenching by nitzschia cf pellucida: study of the metabolization of N-Acyl homoserine lactones by a benthic diatom. Mar Drugs 12:352–367

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Tammilehto A, Nielsen TG, Krock B, Møller EF, Lundholm N (2015) Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata calanoid copepods. Aquat Toxicol 159:52–61

    Google Scholar 

  • Tanaka A, Ohno N, Nakajima K, Matsuda Y (2016) Light and CO2/cAMP signal cross talk on the promoter elements of chloroplastic β -carbonic anhydrase genes in the marine diatom Phaeodactylum tricornutum. Plant Physiol 170:1105–1116

    CAS  PubMed  CrossRef  Google Scholar 

  • Taylor AR (2009) A Fast Na+/Ca2+-based action potential in a marine diatom. PLoS One 4:e4966

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Thamatrakoln K, Korenovska O, Niheu a K, Bidle KD (2012) Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ Microbiol 14:67–81

    CAS  PubMed  CrossRef  Google Scholar 

  • Thompson SEM, Taylor AR, Brownlee C, Callow ME, Callow JA (2008) THE role of nitric oxide in diatom adhesion in relation to substratum properties 1. J Phycol 44:967–976

    CAS  PubMed  CrossRef  Google Scholar 

  • Thornton DCO, Chen J (2017) Exopolymer production as a function of cell permeability and death in a diatom (Thalassiosira weissflogii) and a cyanobacterium (Synechococcus elongatus). J Phycol 53:245–260

    CAS  PubMed  CrossRef  Google Scholar 

  • Van Tol HM, Armbrust EV (2020) Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS One 16(3):e0241960

    Google Scholar 

  • Torres-Águila NP, Martí-Solans J, Ferrández-Roldán A, Almazán A, Roncalli V, D’Aniello S, Romano G, Palumbo A, Albalat R, Cañestro C (2018) Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Commun Biol 1:121

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Traller JC, Hildebrand M (2013) High throughput imaging to the diatom Cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation. Algal Res 2:244–252

    CrossRef  Google Scholar 

  • Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Uren AG, O’Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV et al (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    CAS  PubMed  Google Scholar 

  • Vallet M, Baumeister TUH, Kaftan F, Grabe V, Buaya A, Thines M, Svatoš A, Pohnert G (2019) The oomycete Lagenisma coscinodisci hijacks host alkaloid synthesis during infection of a marine diatom. Nat Commun 10:4938

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat J-L, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MCE et al (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci U S A 108:1711–1716

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vanelslander B, Paul C, Grueneberg J, Prince EK, Gillard J, Sabbe K, Pohnert G, Vyverman W (2012) Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc Natl Acad Sci 109:2412–2417

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vardi A (2008) Cell signaling in marine diatoms. Commun Integr Biol 1:134–136

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vardi A, Formiggini F, Casotti R, De Martino A, Ribalet F, Miralto A, Bowler C (2006) A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol 4:0411–0419

    CAS  CrossRef  Google Scholar 

  • Vardi A, Bidle KD, Kwityn C, Hirsh DJ, Thompson SM, Callow JA, Falkowski P, Bowler C (2008a) A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr Biol 18:895–899

    CAS  PubMed  CrossRef  Google Scholar 

  • Vardi A, Thamatrakoln K, Bidle KD, Falkowski PG (2008b) Diatom genomes come of age. Genome Biol 9:245

    PubMed  CrossRef  CAS  Google Scholar 

  • Vardi A, Van Mooy B a S, Fredricks HF, Popendorf KJ, Ossolinski JE, Haramaty L, Bidle KD (2009) Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science (80-) 326:861–865

    CAS  CrossRef  Google Scholar 

  • Vincent FJ, Sheyn U, Porat Z, Vardi A (2021) Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc Natl Acad Sci 118:e2105198118. https://doi.org/10.1073/pnas.2105198118

    CAS  CrossRef  Google Scholar 

  • Volpert A, Graff van Creveld S, Rosenwasser S, Vardi A (2018) Diurnal fluctuations in chloroplast GSH redox state regulate susceptibility to oxidative stress and cell fate in a bloom-forming diatom. J Phycol 54:329–341

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang R, Seyedsayamdost MR (2017) Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat Rev Chem 1:1–8

    CrossRef  Google Scholar 

  • Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F (2015) Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot 66:2923–2934

    CAS  PubMed  CrossRef  Google Scholar 

  • Wells ML, Trick CG, Cochlan WP, Hughes MP, Trainer VL (2005) Domoic acid: The synergy of iron, copper, and the toxicity of diatoms. Limnol Oceanogr 50:1908–1917

    CAS  CrossRef  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    CAS  PubMed  CrossRef  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607

    CAS  PubMed  CrossRef  Google Scholar 

  • Wheeler G, Helliwell K, Brownlee C (2018) Calcium signalling in algae. Perspect Phycol. https://doi.org/10.1127/pip/2018/0082

  • Woehle C, Dagan T, Landan G, Vardi A, Rosenwasser S (2017) Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis. Nat Plants 3:17066

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wolfram S, Wielsch N, Hupfer Y, Mönch B, Lu-Walther HW, Heintzmann R, Werz O, Svatoš A, Pohnert G (2015) A metabolic probe-enabled strategy reveals uptake and protein targets of polyunsaturated aldehydes in the diatom Phaeodactylum tricornutum. PLoS One 10:e0140927

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wysocki R, Kron SJ (2004) Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. J Cell Biol 166:311–316

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:3–4

    CrossRef  Google Scholar 

  • Yang C, Fang S, Chen D, Wang J, Liu F, Xia C (2016) The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.). Mar Pollut Bull 107:118–124

    CAS  PubMed  CrossRef  Google Scholar 

  • Ying ZT, Dobbs FC (2007) Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies. Appl Environ Microbiol 73:2306–2313

    CrossRef  CAS  Google Scholar 

  • Zehr JP, Weitz JS, Joint I (2017) How microbes survive in the open ocean. Science (80-) 357:646–647

    CAS  CrossRef  Google Scholar 

  • Zhang Y, Lam E (2011) Sheathing the swords of death: post-translational modulation of plant metacaspases. Plant Signal Behav 6:2051–2056

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgement

This research was supported by the Israeli Science Foundation (ISF) (grant #1972) awarded to AV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Vardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Graff van Creveld, S., Mizrachi, A., Vardi, A. (2022). An Ocean of Signals: Intracellular and Extracellular Signaling in Diatoms. In: Falciatore, A., Mock, T. (eds) The Molecular Life of Diatoms. Springer, Cham. https://doi.org/10.1007/978-3-030-92499-7_22

Download citation