Skip to main content

Nexus of Urbanization and Changes in Agricultural Land in Bangladesh

Abstract

Agriculture is the backbone of the economy of many countries; however, loss of agricultural land has become widespread due to urbanization-induced land use/cover change (LU/CC) worldwide. Understanding the spatial distribution of agricultural land and its changes is important for policy development. This study is aimed at investigating the spatiotemporal changes in agricultural lands and evaluating their relationship with urbanization. Landsat and Nightime Light (NTL) satellite images were utilized. The Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and Normalized Difference Built-up Index (NDBI) were used to classify agricultural land cover types using the Decision Tree (DT) algorithm. The digital number (DN) of the NTL images was used to segregate urban and rural areas. Moreover, the lighting pixels were used to classify districts into four categories, e.g., high, moderate, low, and very low urbanized areas. Subsequently, we computed basic statistics of the changes in agricultural lands and enumerated yearly loss or gain during 26 years, 1992–2018. This study indicated that Bangladesh experienced a significant loss in agricultural lands; however, the loss rates varied. A high rate of change was observed in rural areas compared to urban areas. The results also showed a strong coefficient of determination (R2 = 0.59) between changes in agricultural land and lighting areas in urban areas of Bangladesh.

Keywords

  • Urbanization
  • Agriculture
  • Remote sensing
  • Urban
  • Rural

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-92365-5_26
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-92365-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abd El-Kawy, O. R., Ismail, H. A., Yehia, H. M., & Allam, M. A. (2019). Temporal detection and prediction of agricultural land consumption by urbanization using remote sensing. The Egyptian Journal of Remote Sensing and Space Science, 22, 237–246.

    CrossRef  Google Scholar 

  • Abdullah, A. Y. M., Masrur, A., Adnan, M. S. G., Baky, M., Al, A., Hassan, Q. K., & Dewan, A. (2019). Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sensing, 11, 790.

    CrossRef  Google Scholar 

  • Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., & Hall, J. W. (2020). The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 99, 104868.

    CrossRef  Google Scholar 

  • BBS. (2011). http://203.112.218.69/redbgd/

  • BBS. (2018). Yearbook of Agricultural Statistics, 45 years agriculture statistics of major crops (Aus, Amon, Boro, Jute, Potato & Wheat). In B.B.O. Statistics (Ed.). Statistics and Informatics Division, Ministry of Planning.

    Google Scholar 

  • BBS. (2019). Yearbook of Agricultural Statistics. In B.B.O. Statistics (Ed.). Statistics and Informatics Division, Ministry of Planning.

    Google Scholar 

  • Bennett, M. M., & Smith, L. C. (2017). Using multitemporal nighttime lights data to compare regional development in Russia and China, 1992–2012. International Journal of Remote Sensing, 38, 5962–5991.

    CrossRef  Google Scholar 

  • Deng, X., Huang, J., Rozelle, S., & Uchida, E. (2006). Cultivated land conversion and potential agricultural productivity in China. Land Use Policy, 23, 372–384.

    CrossRef  Google Scholar 

  • Dewan, A. M., Kankam-Yeboah, K., & Nishigaki, M. (2006). Using synthetic aperture radar (SAR) data for mapping river water flooding in an urban landscape: a case study of Greater Dhaka, Bangladesh. Journal of Japan Society of Hydrology and Water Resources, 19(1), 44–54. https://doi.org/10.3178/jjshwr.19.44

  • Dewan, A., & Yamaguchi, Y. (2009a). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29, 390–401.

    CrossRef  Google Scholar 

  • Dewan, A., & Yamaguchi, Y. (2009b). Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environmental Monitoring and Assessment, 150, 237.

    CrossRef  Google Scholar 

  • Faridatul, M. I., & Ahmed, B. (2020). Assessing agricultural vulnerability to drought in a heterogeneous environment: A remote sensing-based approach. Remote Sensing, 12, 3363.

    CrossRef  Google Scholar 

  • Hassan, M. M. (2017). Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sensing Applications: Society and Environment, 7, 69–83.

    CrossRef  Google Scholar 

  • Islam, M. M., Jannat, A., Dhar, A. R., & Ahamed, T. (2020). Factors determining conversion of agricultural land use in Bangladesh: farmers' perceptions and perspectives of climate change. GeoJournal, 85, 343–362.

    CrossRef  Google Scholar 

  • Jiang, L., Deng, X., & Seto, K. C. (2013). The impact of urban expansion on agricultural land use intensity in China. Land Use Policy, 35, 33–39.

    CrossRef  Google Scholar 

  • Joshi, P., Bairwa, B., Sharma, R., & Sinha, V. (2011). Assessing urbanization patterns over India using temporal DMSP-OLS nighttime satellite data. Current Science, 100, 1479–1482.

    Google Scholar 

  • Justice, C., Gutman, G., & Vadrevu, K. P. (2015). NASA land cover and land use change (LCLUC). An Interdisciplinary Research Program, 148(15), 4–9.

    Google Scholar 

  • Kamruzzaman, M., Hwang, S., Cho, J., Jang, M. W., & Jeong, H. (2019). Evaluating the Spatiotemporal Characteristics of Agricultural Drought in Bangladesh Using Effective Drought Index. Water, 11, 2437.

    CrossRef  Google Scholar 

  • Kurucu, Y., & Chiristina, N. K. (2008). Monitoring the impacts of urbanization and industrialization on the agricultural land and environment of the Torbali, Izmir region, Turkey. Environmental Monitoring and Assessment, 136, 289–297.

    CrossRef  Google Scholar 

  • Lasko, K., & Vadrevu, K. P. (2018). Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environmental Pollution, 236(5), 795–806.

    CrossRef  Google Scholar 

  • Lasko, K., Vadrevu, K. P., Tran, V. T., Ellicott, E., Nguyen, T. T., Bui, H. Q., & Justice, C. (2017). Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environmental Research Letters, 12(8), 085006.

    CrossRef  Google Scholar 

  • Lasko, K., Vadrevu, K. P., & Nguyen, T. T. N. (2018). Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS One, 13(5), e0196629.

    CrossRef  Google Scholar 

  • Lasko, K., Vadrevu, K. P., Bandaru, V., Nguyen, T. N. T., & Bui, H. Q. (2021). PM2. 5 Emissions from Biomass Burning in South/Southeast Asia–Uncertainties and Trade-Offs. In Biomass Burning in South and Southeast Asia (pp. 149–169). CRC Press.

    CrossRef  Google Scholar 

  • Liu, Z., He, C., Zhang, Q., Huang, Q., & Yang, Y. (2012). Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landscape and Urban Planning, 106, 62–72.

    CrossRef  Google Scholar 

  • Lu, Q., Liang, F., Bi, X., Duffy, R., & Zhao, Z. (2011). Effects of urbanization and industrialization on agricultural land use in Shandong Peninsula of China. Ecological Indicators, 11, 1710–1714.

    CrossRef  Google Scholar 

  • Ma, T., Zhou, C., Pei, T., Haynie, S., & Fan, J. (2012). Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sensing of Environment, 124, 99–107.

    CrossRef  Google Scholar 

  • Ma, T., Zhou, Y., Zhou, C., Haynie, S., Pei, T., & Xu, T. (2015). Nighttime light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sensing of Environment, 158, 453–464.

    CrossRef  Google Scholar 

  • Ma, J., Guo, J., Ahmad, S., Li, Z., & Hong, J. (2020). Constructing a New Inter-Calibration Method for DMSP-OLS and NPP-VIIRS Nighttime Light. Remote Sensing, 12, 937.

    CrossRef  Google Scholar 

  • Malaque, I. R., & Yokohari, M. (2007). Urbanization process and the changing agricultural landscape pattern in the urban fringe of Metro Manila, Philippines. Environment and Urbanization, 19, 191–206.

    CrossRef  Google Scholar 

  • Mortuza, M., Moges, E., Demissie, Y., & Li, H. Y. (2019). Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis. Theoretical and Applied Climatology, 135, 855–871.

    CrossRef  Google Scholar 

  • Nguyen, T. H. T., Bui, Q. T., Man, Q. H., & De Vries Walter, T. (2016). Socioeconomic effects of agricultural land conversion for urban development: Case study of Hanoi, Vietnam. Land Use Policy, 54, 583–592.

    CrossRef  Google Scholar 

  • Oanh, N. T. K., Permadi, D. A., Dong, N. P., & Nguyet, D. A. (2018). Emission of toxic air pollutants and greenhouse gases from crop residue open burning in Southeast Asia. In K. P. Vadrevu, T. Ohara, & C. Justice (Eds.), Land-atmospheric research applications in South/Southeast Asia (pp. 47–68). Springer.

    CrossRef  Google Scholar 

  • Pandey, B., & Seto, K. C. (2015). Urbanization and agricultural land loss in India: Comparing satellite estimates with census data. Journal of Environmental Management, 148, 53–66.

    CrossRef  Google Scholar 

  • Quasem, M. A. (2011). Conversion of agricultural land to non-agricultural uses in Bangladesh: Extent and determinants. The Bangladesh Development Studies, 34, 59–85.

    Google Scholar 

  • Radwan, T. M., Blackburn, G. A., Whyatt, J. D., & Atkinson, P. M. (2019). Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt. Remote Sensing, 11, 332.

    CrossRef  Google Scholar 

  • Rahman, S. (2010). Six decades of agricultural land use change in Bangladesh: Effects on crop diversity, productivity, food availability and the environment, 1948–2006. Singapore Journal of Tropical Geography, 31, 254–269.

    CrossRef  Google Scholar 

  • Rai, R., Zhang, Y., Paudel, B., Li, S., & Khanal, N. R. (2017). A synthesis of studies on land use and land cover dynamics during 1930–2015 in Bangladesh. Sustainability, 9, 1866.

    CrossRef  Google Scholar 

  • Reynolds, R., Liang, L., Li, X., & Dennis, J. (2017). Monitoring annual urban changes in a rapidly growing portion of Northwest Arkansas with a 20-Year Landsat record. Remote Sensing, 9, 71.

    CrossRef  Google Scholar 

  • Rimal, B. (2013). Urbanization and the decline of agricultural land in Pokhara Sub-metropolitan City, Nepal. Journal of Agricultural Science, 5, 54.

    Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS, In Proceedings of the Third ERTS Symposium; NASA SP-351. NASA: Washington, DC, USA, pp. 309–317.

    Google Scholar 

  • Shaw, R., & Das, A. (2018). Identifying peri-urban growth in small and medium towns using GIS and remote sensing technique: A case study of English Bazar Urban Agglomeration, West Bengal, India. The Egyptian Journal of Remote Sensing and Space Science, 21, 159–172.

    CrossRef  Google Scholar 

  • Su, S., Ma, X., & Xiao, R. (2014). Agricultural landscape pattern changes in response to urbanization at ecoregional scale. Ecological Indicators, 40, 10–18.

    CrossRef  Google Scholar 

  • Tariq, S., & Ul-Haq, Z. (2018). Satellite remote sensing of aerosols and gaseous pollution over Pakistan. In K. P. Vadrevu, T. Ohara, & C. Justice (Eds.), Land-Atmospheric Research applications in South/Southeast Asia (pp. 523–552). Springer.

    CrossRef  Google Scholar 

  • Ustaoglu, E., & Williams, B. (2017). Determinants of urban expansion and agricultural land conversion in 25 EU countries. Environmental Management, 60, 717–746.

    CrossRef  Google Scholar 

  • Vadrevu, K. P., & Justice, C. O. (2011). Vegetation fires in the Asian region: Satellite observational needs and priorities. Global Environmental Research, 15(1), 65–76.

    Google Scholar 

  • Vadrevu, K. P., & Lasko, K. P. (2015). Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. Journal of Environmental Management, 148, 10–20.

    CrossRef  Google Scholar 

  • Vadrevu, K. P., Ellicott, E., Badarinath, K. V. S., & Vermote, E. (2011). MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, North India. Environmental Pollution, 159(6), 1560–1569.

    CrossRef  Google Scholar 

  • Vadrevu, K. P., Giglio, L., & Justice, C. (2013). Satellite based analysis of fire–carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmospheric Environment, 64, 179–191.

    CrossRef  Google Scholar 

  • Vadrevu, K. P., Ohara, T., & Justice, C. (2014). Air pollution in Asia. Environmental Pollution, 12, 233–235.

    CrossRef  Google Scholar 

  • Vadrevu, K., Ohara, T., & Justice, C. (2017). Land cover, land use changes and air pollution in Asia: a synthesis. Environmental Research Letters, 12(12), 120201.

    CrossRef  Google Scholar 

  • Vadrevu, K. P., Ohara, T., & Justice, C. (Eds.). (2018). Land-Atmospheric Research Applications in South and Southeast Asia. Springer.

    Google Scholar 

  • Vadrevu, K. P., Dadhwal, V. K., Gutman, G., & Justice, C. (2019a). Remote sensing of agriculture–South/Southeast Asia research initiative special issue. International Journal of Remote Sensing, 40(21), 8071–8075.

    CrossRef  Google Scholar 

  • Vadrevu, K., Heinimann, A., Gutman, G., & Justice, C. (2019b). Remote sensing of land use/cover changes in South and Southeast Asian Countries. International Journal of Digital Earth, 12(10), 1099–1102.

    CrossRef  Google Scholar 

  • Vadrevu, K. P., Ohara, T., & Justice, C. (Eds.). (2021a). Biomass burning in South and Southeast Asia: Mapping and monitoring, volume one. CRC Press.

    Google Scholar 

  • Vadrevu, K. P., Ohara, T., & Justice, C. (Eds.). (2021b). Biomass burning in South and Southeast Asia: Impacts on the Biosphere, volume two. CRC Press.

    Google Scholar 

  • Wu, J., He, S., Peng, J., Li, W., & Zhong, X. (2013). Intercalibration of DMSP-OLS nighttime light data by the invariant region method. International Journal of Remote Sensing, 34, 7356–7368.

    CrossRef  Google Scholar 

  • Xu, H. Q. (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 5, 589–595.

    Google Scholar 

  • Xu, P., Jin, P., & Cheng, Q. (2020). Monitoring Regional Urban Dynamics Using DMSP/OLS Nighttime Light Data in Zhejiang Province. Mathematical Problems in Engineering, 2020, 1–10.

    Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24, 583–594.

    CrossRef  Google Scholar 

  • Zhang, Q., & Seto, K. C. (2011). Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sensing of Environment, 115, 2320–2329.

    CrossRef  Google Scholar 

  • Zhao, M., Zhou, Y., Li, X., Cao, W., He, C., Yu, B., Li, X., Elvidge, C. D., Cheng, W., & Zhou, C. (2019). Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing, 11, 1971.

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors thank the US Geological Survey for global Landsat images and making them publicly available. We also thank the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) for providing NTL images free of cost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mst. Ilme Faridatul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Faridatul, M.I., Adnan, M.S.G., Dewan, A. (2022). Nexus of Urbanization and Changes in Agricultural Land in Bangladesh. In: Vadrevu, K.P., Le Toan, T., Ray, S.S., Justice, C. (eds) Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries. Springer, Cham. https://doi.org/10.1007/978-3-030-92365-5_26

Download citation