Skip to main content

Crop LAI and Biomass Estimation from Different Polarization Modes of Simulated NISAR Data

  • Chapter
  • First Online:
Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries
  • 747 Accesses

Abstract

This study investigates the performances of three radar vegetation indices derived from full (HH-VH-VV), compact (RH-RV), and dual (VV-VH or HH-HV) polarimetric Synthetic Aperture Radar (SAR) data for Leaf Area Index (LAI) and biomass estimation. We use the notion of a geodesic distance between the incoherent representation of radar measurements and suitable volume scattering models to derive the full and compact polarimetric indices, i.e., the Generalized Radar Vegetation Index (GRVI) and Compact-pol Radar Vegetation Index (CpRVI). Independently, we have also introduced a radar vegetation index (DpRVI) for measurements in dual-pol utilizing the degree of polarization (DoP) of scattered waves. We evaluate these indices with particular attention for the NASA-ISRO SAR (NISAR) L-band SAR system. For this purpose, we simulate NISAR data from the L-band full polarimetric UAVSAR data, which were acquired over the test site at Winnipeg in Canada during the SMAPVEX12 campaign. The radar-derived vegetation indices at different phenological stages of canola affirm a good correlation with biophysical variables. Subsequently, we employed linear and non-linear regression models to estimate LAI and biomass. The correlation analysis indicates that GRVI derived LAI and biomass have the lowest RMSE and high R2 values compared to CpRVI and DpRVI. The DpRVI in VV-VH mode also provided promising accuracy for these biophysical parameter retrievals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://uavsar.jpl.nasa.gov/science/documents/nisar-sample-products.html

  2. 2.

    During the simulation of 2 × 2 covariance matrix C2, the ellipticity of transmitted wave y = 45°, and the right-hand circular condition is considered (Kumar et al., 2017)

References

  • Antropov, O., Rauste, Y., & Hame, T. (2011). Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3838–3848.

    Article  Google Scholar 

  • Barakat, R. (1977). Degree of polarization and the principal idempotents of the co- herency matrix. Optics Communications, 23(2), 147–150.

    Article  Google Scholar 

  • Canisius, F., et al. (2018). Tracking crop phenological development using multi- temporal polarimetric Radarsat-2 data. Remote Sensing of Environment, 210, 508–518.

    Article  Google Scholar 

  • Huang, Y., Walker, J. P., Gao, Y., Wu, X., & Monerris, A. (2016). Estimation of vegetation water content from the radar vegetation index at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 54(2), 981–989.

    Article  Google Scholar 

  • INRA. (2017). CAN-EYE. https://www6.paca.inra.fr/can-eye. URL https://www6.paca.inra.fr/can-eye

  • Jagdhuber, T., Hajnsek, I., Bronstert, A., & Papathanassiou, K. P. (2012). Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2201–2215.

    Article  Google Scholar 

  • JPL. (2012). SMAPVEX12-SMAP Cal/Val and field campaigns-SNAP. URL https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/SMAPVEX12/

  • Kim, Y., & van Zyl, J. J. (2009). A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2519–2527. https://doi.org/10.1109/TGRS.2009.2014944

    Article  Google Scholar 

  • Kim, Y., Jackson, T., Bindlish, R., Lee, H., & Hong, S. (2012). Radar vegetation index for estimating the vegetation water content of rice and soybean. IEEE Geoscience and Remote Sensing Letters, 9(4), 564–568.

    Article  Google Scholar 

  • Kim, Y., Jackson, T., Bindlish, R., Hong, S., Jung, G., & Lee, K. (2014). Retrieval of wheat growth parameters with radar vegetation indices. IEEE Geoscience and Remote Sensing Letters, 11(4), 808–812.

    Article  Google Scholar 

  • Kumar, V., McNairn, H., Bhattacharya, A., & Rao, Y. S. (2017). Temporal response of scat- tering from crops for transmitted ellipticity variation in simulated compact-pol SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5163–5174.

    Article  Google Scholar 

  • Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., McNairn, H., & Rao, Y. S. (2020a). Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247, 111954.

    Article  Google Scholar 

  • Mandal, D., Kumar, V., Ratha, D., Lopez-Sanchez, J. M., Bhattacharya, A., McNairn, H., Rao, Y., & Ramana, K. (2020b). Assessment of rice growth conditions in a semi-arid region of India using the generalized radar vegetation index derived from RADARSAT- 2 polarimetric SAR data. Remote Sensing of Environment, 237, 111561.

    Article  Google Scholar 

  • Mandal, D., Ratha, D., Bhattacharya, A., Kumar, V., McNairn, H., Rao, Y. S., & Frery, A. C. (2020c). A radar vegetation index for crop monitoring using compact Polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 58(9), 6321–6335.

    Article  Google Scholar 

  • Mandal, D., Bhattacharya, A., & Rao, Y. S. (2021). Radar remote sensing for crop biophysical parameter estimation. Springer.

    Book  Google Scholar 

  • McNairn, H., Jackson, T. J., Wiseman, G., Belair, S., Berg, A., Bullock, P., Colliander, A., Cosh, M. H., Kim, S. B., Magagi, R., et al. (2014). The soil moisture active passive validation experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2784–2801.

    Article  Google Scholar 

  • NISAR. (2018). NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook. Tech. Rep. CL#18-1893, NASA Jet Propulsion Laboratory. 261 pp.

    Google Scholar 

  • Ratha, D., Bhattacharya, A., & Frery, A. C. (2018). Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance. IEEE Geoscience and Remote Sensing Letters, 15(1), 151–155.

    Article  Google Scholar 

  • Ratha, D., Mandal, D., Kumar, V., McNairn, H., Bhattacharya, A., & Frery, A. C. (2019). A generalized volume scattering model-based vegetation index from polarimetric SAR data. IEEE Geoscience and Remote Sensing Letters, 16(11), 1791–1795.

    Article  Google Scholar 

  • Ratha, D., Pottier, E., Bhattacharya, A., & Frery, A. C. (2020). A polsar scattering power factorization framework and novel roll-invariant parameter-based unsupervised classification scheme using a geodesic distance. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3509–3525.

    Article  Google Scholar 

  • Sato, A., Yamaguchi, Y., Singh, G., & Park, S. E. (2011). Four-component scattering power decomposition with extended volume scattering model. IEEE Geoscience and Remote Sensing Letters, 9(2), 166–170.

    Article  Google Scholar 

  • Stavros, N., Siqueira, P., Osmanoglu, B. (2019). 2018 NISAR Ap plications Workshop: Agriculture and Soil Moisture. URL: https://trs.jpl.nasa.gov/bitstream/handle/2014/45990/JPL%20Pub%2018-4_A1b.pdf

  • Ulaby, F., Allen, C., Eger Iii, G., & Kanemasu, E. (1984). Relating the microwave backscat- tering coefficient to leaf area index. Remote Sensing of Environment, 14(1–3), 113–133.

    Article  Google Scholar 

  • Wiseman, G., McNairn, H., Homayouni, S., & Shang, J. (2014). RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4461–4471.

    Article  Google Scholar 

  • Xie, Q., Ballester-Berman, J., Lopez-Sanchez, J., Zhu, J., & Wang, C. (2017). On the use of generalized volume scattering models for the improvement of general polarimetric model-based decomposition. Remote Sensing, 9(2), 117.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the NASA/JPL for providing simulated NISAR data products. The SMAPVEX12 team members are also appreciated for proving the in-situ measurements through NSIDC User Services. Also, the authors acknowledge the GEO-AWS Earth Observation Cloud Credits Program, which supported the computation on the AWS cloud platform through the project: "AWS4AgriSAR-Crop inventory mapping from SAR data on the cloud computing platform."

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, D., Kumar, V., Bhattacharya, A., Rao, Y.S. (2022). Crop LAI and Biomass Estimation from Different Polarization Modes of Simulated NISAR Data. In: Vadrevu, K.P., Le Toan, T., Ray, S.S., Justice, C. (eds) Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries. Springer, Cham. https://doi.org/10.1007/978-3-030-92365-5_13

Download citation

Publish with us

Policies and ethics