Skip to main content

Evolving Deep Neural Networks for Collaborative Filtering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

  • 1829 Accesses

Abstract

Collaborative Filtering (CF) is widely used in recommender systems to model user-item interactions. With the great success of Deep Neural Networks (DNNs) in various fields, advanced works recently have proposed several DNN-based models for CF, which have been proven effective. However, the neural networks are all designed manually. As a consequence, it requires the designers to develop expertise in both CF and DNNs, which limits the application of deep learning methods in CF and the accuracy of recommended results. In this paper, we introduce the genetic algorithm into the process of designing DNNs. By means of genetic operations like crossover, mutation, and environmental selection strategy, the architectures and the connection weights initialization of the DNNs can be designed automatically. We conduct extensive experiments on two benchmark datasets. The results demonstrate the proposed algorithm outperforms several manually designed state-of-the-art neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sites.google.com/site/xueatalphabeta/academic-projects.

References

  1. Agarwal, D., Chen, B.C.: Regression-based latent factor models. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 19–28 (2009)

    Google Scholar 

  2. Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer, New York (2006). https://doi.org/10.1007/0-387-31909-3

  3. Bobadilla, J., Ortega, F., Hernando, A., Bernal, J.: A collaborative filtering approach to mitigate the new user cold start problem. Knowl.-Based syst. 26, 225–238 (2012)

    Article  Google Scholar 

  4. Cao, J., et al.: Distributed design and implementation of SVD++ algorithm for e-commerce personalized recommender system. In: Zhang, X., Wu, Z., Sha, X. (eds.) Embedded System Technology. CCIS, vol. 572, pp. 30–44. Springer, Singapore (2015). https://doi.org/10.1007/978-981-10-0421-6_4

    Chapter  Google Scholar 

  5. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198 (2016)

    Google Scholar 

  6. Deb, K., Agrawal, R.B., et al.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 635–642 (2006)

    Google Scholar 

  8. Delalleau, O., Bengio, Y.: Shallow vs. deep sum-product networks. In: Advances in Neural Information Processing Systems, vol. 24, pp. 666–674 (2011)

    Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  10. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  11. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

  12. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  13. He, X., Chen, T., Kan, M.Y., Chen, X.: TriRank: review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670 (2015)

    Google Scholar 

  14. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  15. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–558 (2016)

    Google Scholar 

  16. He, K., Zhang X, R.S.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  17. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  18. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Cham (2013). https://doi.org/10.1007/978-3-662-03315-9

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  20. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  21. Saleem, M.: Collaborative filtering: lifeblood of the social web (2008)

    Google Scholar 

  22. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol. Comput. 24(2), 394–407 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Y., Liu, Y., Sun, Y. (2021). Evolving Deep Neural Networks for Collaborative Filtering. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics