Skip to main content

TextCut: A Multi-region Replacement Data Augmentation Approach for Text Imbalance Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

Abstract

In the practical applications of text classification, data imbalance problems occur frequently, which typically leads to prejudice of a classifier against the majority group. Therefore, how to handle imbalanced text datasets to alleviate the skew distribution is a crucial task. Existing mainstream methods tackle it by utilizing interpolation-based augmentation strategies to synthesize new texts according to minority class texts. However, it may mess up the syntactic and semantic information of the original texts, which makes it challenging to model the new texts. We propose a novel data augmentation method based on paired samples, called TextCut, to overcome the above problem. For a minority class text and its paired text, TextCut samples multiple small square regions of the minority text in the hidden space and replaces them with corresponding regions cutout from the paired text. We build TextCut upon the BERT model to better capture the features of minority class texts. We verify that TextCut can further improve the classification performance of the minority and entire categories, and effectively alleviate the imbalanced problem on three benchmark imbalanced text datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreas, J.: Good-enough compositional data augmentation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7556–7566 (2020)

    Google Scholar 

  2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  4. Chen, J., Wu, Y., Yang, D.: Semi-supervised models via data augmentation for classifying interactive affective responses. In: AffCon@ AAAI (2020)

    Google Scholar 

  5. Chen, J., Yang, Z., Yang, D.: Mixtext: linguistically-informed interpolation of hidden space for semi-supervised text classification. In: ACL (2020)

    Google Scholar 

  6. Croce, D., Castellucci, G., Basili, R.: GAN-BERT: generative adversarial learning for robust text classification with a bunch of labeled examples. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2114–2119 (2020)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  8. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  9. Fernando, C., et al.: Pathnet: evolution channels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734 (2017)

  10. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  11. Guo, H.: Nonlinear Mixup: out-of-manifold data augmentation for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4044–4051 (2020)

    Google Scholar 

  12. Guo, H., Mao, Y., Zhang, R.: Augmenting data with Mixup for sentence classification: an empirical study. arXiv preprint arXiv:1905.08941 (2019)

  13. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  14. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  15. Jang, J., Kim, Y., Choi, K., Suh, S.: Sequential targeting: a continual learning approach for data imbalance in text classification. Expert Syst. Appl. 179, 115067 (2021)

    Article  Google Scholar 

  16. Jawahar, G., Sagot, B., Seddah, D.: What does BERT learn about the structure of language? In: ACL 2019–57th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

  17. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3573–3587 (2017)

    Google Scholar 

  18. Li, B., Liu, Y., Wang, X.: Gradient harmonized single-stage detector. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8577–8584 (2019)

    Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  20. Moreo, A., Esuli, A., Sebastiani, F.: Distributional random oversampling for imbalanced text classification. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 805–808 (2016)

    Google Scholar 

  21. Padurariu, C., Breaban, M.E.: Dealing with data imbalance in text classification. Procedia Comput. Sci. 159, 736–745 (2019)

    Article  Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: GLOVE: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  23. Satriaji, W., Kusumaningrum, R.: Effect of synthetic minority oversampling technique (smote), feature representation, and classification algorithm on imbalanced sentiment analysis. In: 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), pp. 1–5. IEEE (2018)

    Google Scholar 

  24. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. In: ACL (1) (2016)

    Google Scholar 

  25. Suh, S., Lee, H., Jo, J., Lukowicz, P., Lee, Y.O.: Generative oversampling method for imbalanced data on bearing fault detection and diagnosis. Appl. Sci. 9(4), 746 (2019)

    Article  Google Scholar 

  26. Tian, J., Chen, S., Zhang, X., Feng, Z.: A graph-based measurement for text imbalance classification. In: ECAI 2020, pp. 2188–2195. IOS Press (2020)

    Google Scholar 

  27. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? Predictive features for hate speech detection on Twitter. In: Proceedings of the NAACL Student Research Workshop, pp. 88–93 (2016)

    Google Scholar 

  28. Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6383–6389 (2019)

    Google Scholar 

  29. Yang, W., Li, J., Fukumoto, F., Ye, Y.: MSCNN: a monomeric-Siamese convolutional neural network for extremely imbalanced multi-label text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6716–6722 (2020)

    Google Scholar 

  30. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  31. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  32. Zhang, R., Yu, Y., Zhang, C.: SeqMix: augmenting active sequence labeling via sequence Mixup. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8566–8579 (2020)

    Google Scholar 

Download references

Acknowledgements

This paper has been supported by the National Key Research and Development Program of China (No. 2018YFB1801105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiquan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, W., Chen, Y., Fu, H., Liu, G. (2021). TextCut: A Multi-region Replacement Data Augmentation Approach for Text Imbalance Classification. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics