Abstract
Reconstructing the fine-grained urban flow from the coarse-grained counterpart is an essential component in intelligent transportation systems, as it can provide accurate traffic flow information under a reduced number of sensors. However, current models based on Convolutional Neural Networks (CNNs) mainly focus on the local pixel correlations and ignore the long-range dependencies. To this end, we propose a TRansformer-guided Urban Flow Magnifier (TRUFM) that incorporates the transformer module in the traffic flow analysis system, which naturally enjoys the advantage of modeling the global-scale correlations. By utilizing this superiority, our framework facilitates the joint inference of the flow distribution across the entire map and hence estimates more precise fine-grained traffic flow. Experimental results demonstrate the effectiveness of our TRUFM, which exceeds the current state-of-the-art methods on various datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zheng, Y., et al.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 1–55 (2014)
Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Kingma, D.P., Jimmy B.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Dong, C., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, PMLR (2015)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Ba, J.L., Jamie R.K., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Kim, J., Jung K.L., Kyoung M.L.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Vandal, T., et al.: DeepSD: generating high resolution climate change projections through single image super-resolution. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)
Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Zong, Z., et al.: DeepDPM: dynamic population mapping via deep neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01 (2019)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037 (2019)
Liang, Y., et al.: UrbanFM: inferring fine-grained urban flows. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)
Ouyang, K., et al.: Fine-grained urban flow inference. IEEE Trans. Knowl. Data Eng., 1 (2020). https://doi.org/10.1109/TKDE.2020.3017104
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Tedjopurnomo, D.A., Bao, Z., Zheng, B., Choudhury, F., Qin, A.K.: A survey on modern deep neural network for traffic prediction: trends, methods and challenges. IEEE Trans. Knowl. Data Eng., 1 (2020). https://doi.org/10.1109/TKDE.2020.3001195
Yin, X., et al.: A comprehensive survey on traffic prediction. arXiv preprint arXiv:2004.08555 (2020)
Han, K., et al.: A survey on visual transformer. arXiv preprint arXiv:2012.12556 (2020)
Touvron, H., et al.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, PMLR (2021)
Wu, B., et al.: Visual transformers: token-based image representation and processing for computer vision. arXiv preprint arXiv:2006.03677 (2020)
Liu, L., et al.: Road network guided fine-grained urban traffic flow inference. arXiv preprint arXiv:2109.14251 (2021)
Zhu, X., et al.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Jiang, Y., Chang, S., Wang, Z.: TransGAN: two transformers can make one strong GAN. arXiv preprint arXiv:2102.07074 (2021)
Khan, S., et al.: Transformers in vision: a survey. arXiv preprint arXiv:2101.01169 (2021)
Acknowledgement
We would like to thank Didi Chuxing for providing the trajectory data of XiAn, China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, X., Zhou, D., Liu, L. (2021). TRUFM: a Transformer-Guided Framework for Fine-Grained Urban Flow Inference. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-92273-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92272-6
Online ISBN: 978-3-030-92273-3
eBook Packages: Computer ScienceComputer Science (R0)