Skip to main content

TRUFM: a Transformer-Guided Framework for Fine-Grained Urban Flow Inference

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

Abstract

Reconstructing the fine-grained urban flow from the coarse-grained counterpart is an essential component in intelligent transportation systems, as it can provide accurate traffic flow information under a reduced number of sensors. However, current models based on Convolutional Neural Networks (CNNs) mainly focus on the local pixel correlations and ignore the long-range dependencies. To this end, we propose a TRansformer-guided Urban Flow Magnifier (TRUFM) that incorporates the transformer module in the traffic flow analysis system, which naturally enjoys the advantage of modeling the global-scale correlations. By utilizing this superiority, our framework facilitates the joint inference of the flow distribution across the entire map and hence estimates more precise fine-grained traffic flow. Experimental results demonstrate the effectiveness of our TRUFM, which exceeds the current state-of-the-art methods on various datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, Y., et al.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 1–55 (2014)

    Google Scholar 

  2. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Kingma, D.P., Jimmy B.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  4. Dong, C., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, PMLR (2015)

    Google Scholar 

  6. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  7. Ba, J.L., Jamie R.K., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  8. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  9. Kim, J., Jung K.L., Kyoung M.L.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  10. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  11. Vandal, T., et al.: DeepSD: generating high resolution climate change projections through single image super-resolution. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  12. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  13. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  15. Zong, Z., et al.: DeepDPM: dynamic population mapping via deep neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01 (2019)

    Google Scholar 

  16. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037 (2019)

    Google Scholar 

  17. Liang, Y., et al.: UrbanFM: inferring fine-grained urban flows. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)

    Google Scholar 

  18. Ouyang, K., et al.: Fine-grained urban flow inference. IEEE Trans. Knowl. Data Eng., 1 (2020). https://doi.org/10.1109/TKDE.2020.3017104

  19. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  20. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  21. Tedjopurnomo, D.A., Bao, Z., Zheng, B., Choudhury, F., Qin, A.K.: A survey on modern deep neural network for traffic prediction: trends, methods and challenges. IEEE Trans. Knowl. Data Eng., 1 (2020). https://doi.org/10.1109/TKDE.2020.3001195

  22. Yin, X., et al.: A comprehensive survey on traffic prediction. arXiv preprint arXiv:2004.08555 (2020)

  23. Han, K., et al.: A survey on visual transformer. arXiv preprint arXiv:2012.12556 (2020)

  24. Touvron, H., et al.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, PMLR (2021)

    Google Scholar 

  25. Wu, B., et al.: Visual transformers: token-based image representation and processing for computer vision. arXiv preprint arXiv:2006.03677 (2020)

  26. Liu, L., et al.: Road network guided fine-grained urban traffic flow inference. arXiv preprint arXiv:2109.14251 (2021)

  27. Zhu, X., et al.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  28. Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  29. Jiang, Y., Chang, S., Wang, Z.: TransGAN: two transformers can make one strong GAN. arXiv preprint arXiv:2102.07074 (2021)

  30. Khan, S., et al.: Transformers in vision: a survey. arXiv preprint arXiv:2101.01169 (2021)

Download references

Acknowledgement

We would like to thank Didi Chuxing for providing the trajectory data of XiAn, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, X., Zhou, D., Liu, L. (2021). TRUFM: a Transformer-Guided Framework for Fine-Grained Urban Flow Inference. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics