Skip to main content

Self-Attention Long-Term Dependency Modelling in Electroencephalography Sleep Stage Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Abstract

Complex sleep stage transition rules pose a challenge for the learning of inter-epoch context with Deep Neural Networks (DNNs) in ElectroEncephaloGraphy (EEG) based sleep scoring. While DNNs were able to overcome the limits of expert systems, the dominant bidirectional Long Short-Term Memory (LSTM) still has some limitations of Recurrent Neural Networks. We propose a sleep Self-Attention Model (SAM) that replaces LSTMs for inter-epoch context modelling in a sleep scoring DNN. With the ability to access distant EEG as easily as adjacent EEG, we aim to improve long-term dependency learning for critical sleep stages such as Rapid Eye Movement (REM). Restricting attention to a local scope reduces computational complexity to a linear one with respect to recording duration. We evaluate SAM on two public sleep EEG datasets: MASS-SS3 and SEDF-78 and compare it to literature and an LSTM baseline model via a paired t-test. On MASS-SS3 SAM achieves \(\kappa = 0.80\), which is equivalent to the best reported result, with no significant difference to baseline. On SEDF-78 SAM achieves \(\kappa = 0.78\), surpassing previous best results, statistically significant, with +4% F1-score improvement in REM. Strikingly, SAM achieves these results with a model size that is at least 50 times smaller than the baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderer, P., et al.: An E-health solution for automatic sleep classification according to Rechtschaffen and kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database. Neuropsychobiology 51(3), 115–133 (2005). https://doi.org/10.1159/000085205

    Article  Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450, July 2016

  3. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  4. Berry, R.B., et al.: The AASM manual for the scoring of sleep and associated events. Rules, Terminology Tech. Specifications, Darien, Ill., Am. Acad. Sleep Med. 176, 2012 (2012)

    Google Scholar 

  5. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading. In: EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings, pp. 551–561 (2016). https://doi.org/10.18653/v1/d16-1053

  6. Dong, H., Supratak, A., Pan, W., Wu, C., Matthews, P.M., Guo, Y.: Mixed neural network approach for temporal sleep stage classification. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 324–333 (2018)

    Article  Google Scholar 

  7. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23) (2000)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  11. Kemp, B., Zwinderman, A.H., Tuk, B., Kamphuisen, H.A., Oberyé, J.J.: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 47(9), 1185–1194 (2000). https://doi.org/10.1109/10.867928

    Article  Google Scholar 

  12. Korkalainen, H., et al.: Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea. IEEE J. Biomed. Health Inform. 24(7), 2073–2081 (2019)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  14. Li, W., et al.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_28

    Chapter  Google Scholar 

  15. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  16. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)

    Google Scholar 

  17. O’Reilly, C., Gosselin, N., Carrier, J., Nielsen, T.: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research. J. Sleep Res. 23(6), 628–635 (2014)

    Article  Google Scholar 

  18. Perslev, M., Jensen, M.H., Darkner, S., Jennum, P.J., Igel, C.: U-time: a fully convolutional network for time series segmentation applied to sleep staging. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 4415–4426 (2019)

    Google Scholar 

  19. Phan, H., Andreotti, F., Cooray, N., Chen, O.Y., De Vos, M.: Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Trans. Neural Syst. Rehabil. Eng. 27(3), 400–410 (2019)

    Article  Google Scholar 

  20. Seo, H., Back, S., Lee, S., Park, D., Kim, T., Lee, K.: Intra- and inter-epoch temporal context network (IITNET) using sub-epoch features for automatic sleep scoring on raw single-channel EEG. Biomed. Signal Process. Control 61, 102037 (2020)

    Article  Google Scholar 

  21. Supratak, A., Dong, H., Wu, C., Guo, Y.: DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 1998–2008 (2017)

    Article  Google Scholar 

  22. Tsinalis, O., Matthews, P.M., Guo, Y., Zafeiriou, S.: Automatic sleep stage scoring with single-channel EEG using convolutional neural networks. arXiv preprint arXiv:1610.01683, October 2016, http://arxiv.org/abs/1610.01683

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

Download references

Acknowledgments

Asan Agibetov helped with LaTeX help and Kluge Tilmann provided computing infrastructure. This work was supported by the Austrian Research Promotion Agency (FFG) grant number 867615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Brandmayr .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3 shows the embedder layer specification.

Table 3. Embedder layer specification based on CNN blocks (FCi) and residual blocks (FRi). Conv BN layers comprise CNN, batch norm and ReLU activation and are specified by kernel size, feature maps \(C_o\), stride and padding.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandmayr, G., Hartmann, M., Fürbass, F., Dorffner, G. (2021). Self-Attention Long-Term Dependency Modelling in Electroencephalography Sleep Stage Prediction. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics