Skip to main content

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 20))

Abstract

When the amount of biological diversity in an agricultural system is significantly higher than the baseline biodiversity of the surrounding area, the agricultural system itself may be recognized as a biodiversity island. Regenerative agricultural systems, which build and maintain fertility through time, may increase and maintain biodiversity as an integrated component of food production. Increases in biodiversity within an agricultural system can span all biological taxonomic kingdoms and vast numbers of classes and species within each. As such, regenerative agricultural management techniques geared toward harmonizing agricultural productivity and biodiversity conservation can contribute to mitigating or reversing detrimental effects of human impacts on landscapes. Greater diversity through intercropping, companion planting, combinations of perennial and annuals crops, cover cropping, hedgerows and diverse edge plantings, reduced agrochemical use, silvopasture with rotational grazing, and selection of rare, heirloom, underutilized, or diverse genetics allows for biodiversity to harmonize with agricultural production. In landscapes lacking protected areas or intact ecosystems, habitat restoration and preservation within agricultural systems can enable both farm productivity and biodiversity to increase. An integration of restoration and agriculture through farmer managed natural regeneration, rewilding, and incorporation of traditional ecological knowledge as operational management approaches within a regenerative agricultural framework may also achieve such ends. Much of the origins of regenerative agriculture emerged from indigenous practice of food production and traditional ecological knowledge that maintains biodiversity. Examples of regenerative agriculture as biodiversity islands, where farm productivity and improved biodiversity are achieved, span a multitude of crops, regions, and cultures throughout the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abebe T (2005) Diversity in homegarden agroforestry systems of southern Ethiopia. PhD thesis, Wageningen University, Wageningen

    Google Scholar 

  • Abreu RC, Hoffmann WA, Vasconcelos HL, Pilo NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3(8):e1701284. https://doi.org/10.1126/sciadv.1701284

    Article  PubMed  PubMed Central  Google Scholar 

  • Adam KL (2006) Community supported agriculture. ATTRA-National Sustainable Agriculture Information Service, Butte. http://attra.ncat.org/

    Google Scholar 

  • Afshari M, Karimi-Shahanjarini A, Khoshravesh S, Besharati F (2021) Effectiveness of interventions to promote pesticide safety and reduce pesticide exposure in agricultural health studies: a systematic review. PLoS One 16(1):e0245766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albuquerque UP, de Sousa DCP (2016) Ethnobiology and biodiversity conservation. In: Albuquerque UP, de Sousa DCP (eds) Introduction to ethnobiology. Springer, Cham, pp 227–232

    Chapter  Google Scholar 

  • Ali M, Khan SJ, Aslam I, Khan Z (2011) Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc Urban Plan 102(4):271–279

    Article  Google Scholar 

  • Alkon A, Guthman J (eds) (2017) The new food activism: opposition, cooperation, and collective action. University of California Press, Berkeley

    Google Scholar 

  • Altieri MA (1995) Biodiversity and biocontrol: Lessons from insect pest management. Academic Press Adv in Plant Path 11(10):191–209

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. In: Altieri MA (ed) Invertebrate biodiversity as bioindicators of sustainable landscapes. Elsevier, Amsterdam, pp 19–31

    Chapter  Google Scholar 

  • Altieri MA (2015) Agroecology, key concepts, principles and practices. Penang, Third World Network (TWN)-SOCLA, Jutaprint

    Google Scholar 

  • Altieri MA (2018) Agroecology: the science of sustainable agriculture. CRC Press, Boca Raton

    Book  Google Scholar 

  • Altieri MA, Schmidt LL (1985) Cover crop manipulation in northern California orchards and vineyards: effects on arthropod communities. Biol Agric Hortic 3(1):1–24

    Article  Google Scholar 

  • Anderson MK (2013) Tending the wild: native American knowledge and the management of California’s natural resources. University of California Press, Berkeley

    Google Scholar 

  • Atkinson D, Watson CA (eds) (2019) The science beneath organic production. Wiley, New York

    Google Scholar 

  • Bacon C, Mendez VE, Gliessman S, Goodman D, Fox J (eds) (2008) Confronting the coffee crisis: fair trade, sustainable livelihoods and ecosystems in Mexico and Central America. MIT Press, Cambridge

    Google Scholar 

  • Balée W (1998) Historical ecology: premises and postulates. In: Balée W (ed) Advances in historical ecology. Columbia University Press, New York, pp 13–29

    Google Scholar 

  • Balzan MV (2017) Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod Plant Interact 11(6):743–754

    Article  Google Scholar 

  • Bardhan S, Jose S, Biswas S, Kabir K, Rogers W (2012) Homegarden agroforestry systems: an intermediary for biodiversity conservation in Bangladesh. Agrofor Syst 85(1):29–34

    Article  Google Scholar 

  • Benayas JMR, Bullock JM (2012) Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15(6):883–899

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188

    Article  Google Scholar 

  • Berkes F, Folke C, Gadgil M (1994) Traditional ecological knowledge, biodiversity, resilience and sustainability. In: Berkes F, Folke C, Gadgil M (eds) Biodiversity conservation. Springer, Dordrecht, pp 269–287

    Google Scholar 

  • Bertsch A (2017) Indigenous successional agroforestry: integrating the old and new to address food insecurity and deforestation. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 65–178

    Google Scholar 

  • Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, Azontonde A, Feller C (2006) Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur J Soil Biol 42:S136–S144

    Article  Google Scholar 

  • Braun A, Duveskog D (2011) The farmer field school approach – history, global assessment and success stories, Background paper for the IFAD rural poverty report. International Fund for Agricultural Development, Rome

    Google Scholar 

  • Brush SB (ed) (2000) Genes in the field: on-farm conservation of crop diversity. Boca Raton, International Development Research Centre and International Plant Genetic Resources Institute/Lewis Publishers

    Google Scholar 

  • Brussaard L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121(3):233–244

    Article  Google Scholar 

  • Burbank L (1915) Luther Burbank: his methods and discoveries and their practical application, vol 12. Luther Burbank Press, New York and London

    Google Scholar 

  • Cabeza M, Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends Ecol Evol 16(5):242–248

    Article  CAS  PubMed  Google Scholar 

  • Cárcamo HA, Spence JR (1994) Crop type effects on the activity and distribution of ground beetles (Coleoptera: Carabidae). Environ Entomol 23(3):684–692

    Article  Google Scholar 

  • Chabay I, Frick M, Helgeson J (eds) (2015) Land restoration: reclaiming landscapes for a sustainable future. Academic, New York

    Google Scholar 

  • Chateil C, Goldringer I, Tarallo L, Kerbiriou C, Le Viol I, Ponge JF, Salmon S, Gachet S, Porcher E (2013) Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric Ecosyst Environ 171:25–32

    Article  Google Scholar 

  • Chen XD, Dunfield KE, Fraser TD, Wakeli SA, Richardson AE, Condron LM (2020) Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res 58(1):1–20

    Article  Google Scholar 

  • Ching LL (2018) Agroecology for sustainable food systems, Environment and development series, 19. Third World Network, Penang

    Google Scholar 

  • Coleman D, Reid C, Cole C (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55

    Article  Google Scholar 

  • Corrado C, Elena T, Giancarlo R, Stefano C (2019) The role of agrobiodiversity in sustainable food systems design and management. In: Nandwani D (ed) Genetic diversity in horticultural plants. Springer, Cham, pp 245–271

    Chapter  Google Scholar 

  • Crist E, Mora C, Engelman R (2017) The interaction of human population, food production, and biodiversity protection. Science 356(6335):260–264

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz R, Suárez S, Ferguson JE (1994) The contribution of Arachis pintoi as a ground cover in some farming systems of Tropical America. CIAT Publication, Cali

    Google Scholar 

  • Dominati EJ, Maseyk FJ, Mackay AD, Rendel JM (2019) Farming in a changing environment: increasing biodiversity on farm for the supply of multiple ecosystem services. Sci Total Environ 662:703–713

    Article  CAS  PubMed  Google Scholar 

  • Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34(4):197–210

    Article  Google Scholar 

  • Duchemin E, Wegmuller F, Legault AM (2008) Urban agriculture: multi-dimensional tools for social development in poor neighbourhoods. Field Actions Sci Rep 2(1):1–8. https://doi.org/10.5194/facts-2-1-2009

    Article  Google Scholar 

  • Duru M, Therond O, Martin G, Martin-Clouaire R, Magne MA, Justes E, Journet EP, Aubertot JN, Savary S, Bergez JE, Sarthou JP (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agron Sustain Dev 35(4):1259–1281

    Article  Google Scholar 

  • Enri SR, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B (2017) A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agric Ecosyst Environ 241:1–10

    Article  Google Scholar 

  • Fair-Child D (1939) The world was my garden: travels of a plant explorer. Soil Sci 48(4):356

    Article  Google Scholar 

  • Fearnside P (2017) Business as usual: a resurgence of deforestation in the Brazilian Amazon. Yale Environ 360:1–6

    Google Scholar 

  • Finch CU, Sharp WC (1976) Cover crops in California orchards and vineyards. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Gabriel S (2018) Silvopasture: a guide to managing grazing animals, forage crops, and trees in a temperate farm ecosystem. Chelsea Green Publishing, White River Junction

    Google Scholar 

  • Gaudin AC, Tolhurst TN, Ker AP, Janovicek K, Tortora C, Martin RC, Deen W (2015) Increasing crop diversity mitigates weather variations and improves yield stability. PLoS One 10(2):e0113261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibbons LV (2020) Regenerative—the new sustainable? Sustainability 12(13):5483

    Article  Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AM, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6(1):3–16

    Article  Google Scholar 

  • Gliessman S (2016) Transforming food systems with agroecology. Agroecol Sustain Food Syst 40(3):187–189. https://doi.org/10.1080/21683565.2015.1130765

    Article  Google Scholar 

  • Gray M (2013) Labor and the locavore: the making of a comprehensive food ethic. University of California Press, Berkeley

    Book  Google Scholar 

  • Gustafson JP, Raven PH, Ehrlich PR (2020) Population, agriculture, and biodiversity: problems and prospects. University of Missouri Press, Columbia

    Google Scholar 

  • Henderson K, Loreau M (2019) An ecological theory of changing human population dynamics. People Nat 1(1):31–43

    Article  Google Scholar 

  • Holland JM (2019) Contribution of hedgerows to biological control. In: Dover JW (ed) The ecology of hedgerows and field margins. Routledge, Abingdon, pp 123–146

    Chapter  Google Scholar 

  • Huang W, Luukkanen O, Johanson S, Kaarakka V, Räisänen S, Vihemäki H (2002) Agroforestry for biodiversity conservation of nature reserves: functional group identification and analysis. Agrofor Syst 55(1):65–72

    Article  Google Scholar 

  • Jackson LE, Pascual U, Brussaard L, de Ruiter P, Bawa KS (2007) Biodiversity in agricultural landscapes: investing without losing interest. Agric Ecosyst Environ 121(3):193–195

    Article  Google Scholar 

  • Jordan CF (1998) Working with nature: resource management for sustainability. Taylor & Francis, Amsterdam

    Google Scholar 

  • Jørgensen LN, Kudsk P (2006) Twenty years’ experience with reduced agrochemical inputs: effect on farm economics, water quality, biodiversity and environment. In: Home-Grown Cereals Authority (HGCA) agronomist conference, Grantham, UK

    Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Article  Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85(1):1–8

    Article  Google Scholar 

  • Jose S, Walter D, Kumar BM (2019) Ecological considerations in sustainable silvopasture design and management. Agrofor Syst 93(1):317–331

    Article  Google Scholar 

  • Kidd LR, Garrard GE, Bekessy SA, Mills M, Camilleri AR, Fidler F, Fielding KS, Gordon A, Gregg EA, Kusmanoff AM, Louis W (2019) Messaging matters: a systematic review of the conservation messaging literature. Biol Conserv 236:92–99

    Article  Google Scholar 

  • Kimbrell A (ed) (2002) The fatal harvest reader: the tragedy of industrial agriculture. Island Press, Washington, DC

    Google Scholar 

  • Klasen S, Meyer KM, Dislich C, Euler M, Faust H, Gatto M, Hettig E, Melati DN, Jaya INS, Otten F, Pérez-Cruzado C (2016) Economic and ecological trade-offs of agricultural specialization at different spatial scales. Ecol Econ 122:111–120

    Article  Google Scholar 

  • Lacombe S, Bradley RL, Hamel C, Beaulieu C (2009) Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agric Ecosyst Environ 131(1–2):25–31

    Article  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45(1):175–201

    Article  CAS  PubMed  Google Scholar 

  • Lankoski J (2016) Alternative payment approaches for biodiversity conservation in agriculture. https://www.oecd-ilibrary.org/content/paper/5jm22p4ptg33-en

  • Leakey RR (1999) Agroforestry for biodiversity in farming systems. In: Collins WW, Calvin OQ (eds) Biodiversity in agroecosystems. Lewis Publishers, New York, pp 127–145

    Google Scholar 

  • Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC (2020) The concept and future prospects of soil health. Nat Rev Earth Environ. https://doi.org/10.1038/s43017-020-0080-8

  • Lichtfouse E (ed) (2018) Sustainable agriculture reviews 31: biocontrol, vol 31. Springer, New York

    Google Scholar 

  • Liere H, Jha S, Philpott SM (2017) Intersection between biodiversity conservation, agroecology, and ecosystem services. Agroecol Sustain Food Syst 41(7):723–760

    Article  Google Scholar 

  • Long R, Corbett A, Lamb C, Reberg-Horton C, Chandler J, Stimmann M (1998) Beneficial insects move from flowering plants to nearby crops. Calif Agric 52(5):23–26

    Article  Google Scholar 

  • Lovell ST (2010) Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2(8):2499–2522

    Article  Google Scholar 

  • Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC (2020) Impact of agrochemicals on soil health. In: Prasad MNV (ed) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 161–187

    Chapter  Google Scholar 

  • Massy C (2017) Call of the reed warbler: a new agriculture—a new earth. University of Queensland Press, St. Lucia, p 569

    Google Scholar 

  • McAdam JH, McEvoy PM (2009) The potential for silvopastoralism to enhance biodiversity on grassland farms in Ireland. In: McAdam JH, McEvoy PM (eds) Agroforestry in Europe. Springer, Dordrecht, pp 343–356

    Google Scholar 

  • McDermott ME, Rodewald AD (2014) Conservation value of silvopastures to Neotropical migrants in Andean forest flocks. Biol Conserv 175:140–147

    Article  Google Scholar 

  • McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55(3):201–212

    Article  Google Scholar 

  • McNeely JA, Schroth G (2006) Agroforestry and biodiversity conservation–traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15(2):549–554

    Article  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34

    Article  Google Scholar 

  • Mendenhall CD, Karp DS, Meyer CF, Hadly EA, Daily GC (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509(7499):213–217

    Article  CAS  PubMed  Google Scholar 

  • Miller TP, Rebek EJ, Schnelle MA (2017) Banker plants for control of greenhouse pests. Oklahoma Cooperative Extension Service, Oklahoma State University, Stillwater. https://extension.okstate.edu/

    Google Scholar 

  • Mills J, Ingram J, Dibari C, Merante P, Karaczun Z, Molnar A, Sánchez B, Iglesias A, Ghaley BB (2020) Barriers to and opportunities for the uptake of soil carbon management practices in European sustainable agricultural production. Agroecol Sustain Food Syst 44(9):1185–1211

    Article  Google Scholar 

  • Montagnini F (2020) The contribution of agroforestry to restoration and conservation: biodiversity islands in degraded landscapes. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes: recent advances and emerging challenges. Springer, New York, pp 445–479. https://doi.org/10.1007/978-981-15-4136-0_15

    Chapter  Google Scholar 

  • Montagnini F, del Fierro S (2022) Functions of agroforestry systems as biodiversity islands in productive landscapes. In: Montagnini F (ed) Biodiversity Islands: strategies for conservation in human-dominated environments. Topics in Biodiversity and Conservation, Springer, Cham, pp 89–116

    Google Scholar 

  • Montagnini F, Metzel R (2017) The contribution of agroforestry to sustainable development goal 2: end hunger, achieve food security and improved nutrition, and promote sustainable agriculture. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry 12. Springer, Cham, pp 11–45

    Chapter  Google Scholar 

  • Montagnini F, Eibl B, Grance L, Maiocco D, Nozzi D (1997) Enrichment planting in overexploited subtropical forests of the Paranaense region of Misiones. Argent For Ecol Manage 99(1–2):237–246

    Article  Google Scholar 

  • Montagnini F, Levin B, Berg KE (2022) Introduction. Biodiversity Islands: strategies for conservation in human-dominated environments. In: Montagnini F (ed) Biodiversity Islands: strategies for conservation in human-dominated environments, Topics in Biodiversity and Conservation. Springer, Cham, pp 1–35

    Google Scholar 

  • Montgomery D (2018) Growing a revolution: bringing our soil back to life. W.W. Norton and Company Inc., New York

    Google Scholar 

  • Moss C, Lukac M, Harris F, Outhwaite CL, Scheelbeek PF, Green R, Berstein FM, Dangour AD (2020) The effects of crop diversity and crop type on biological diversity in agricultural landscapes: a systematic review protocol [version 2; peer review: 1 approved, 2 approved with reservations]. Wellcome Open Res 4(101). https://doi.org/10.12688/wellcomeopenres.15343.2

  • Mouysset L, Doyen L, Pereau JC, Jiguet F (2015) Benefits and costs of biodiversity in agricultural public policies. Eur Rev Agric Econ 42(1):51–76

    Article  Google Scholar 

  • Nabhan GP (2014) Food security, biodiversity and human health: ethnobiology as a predictive science. J Ethnobiol 34(1):7–11

    Article  Google Scholar 

  • Nabhan GP (2016) Enduring seeds: native American agriculture and wild plant conservation. University of Arizona Press, Tucson

    Google Scholar 

  • Nair PK (2017) Managed multi-strata tree+ crop systems: an agroecological marvel. Front Environ Sci. https://doi.org/10.3389/fenvs.2017.00088

  • Navarro LM, Pereira HM (eds) (2015) Rewilding European landscapes. Springer, Cham

    Google Scholar 

  • Nazarea VD (2005) Heirloom seeds and their keepers: marginality and memory in the conservation of biological diversity. University of Arizona Press, Tucson

    Book  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL, Hoskins AJ, Lysenko I, Phillips HR, Burton VJ (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353(6296):288–291

    Article  CAS  PubMed  Google Scholar 

  • Orefice JN, Carroll J (2017) Silvopasture—it’s not a load of manure: differentiating between silvopasture and wooded livestock paddocks in the northeastern United States. J For 115(1):71–72

    Google Scholar 

  • Orefice J, Smith RG, Carroll J, Asbjornsen H, Howard T (2019) Forage productivity and profitability in newly-established open pasture, silvopasture, and thinned forest production systems. Agrofor Syst 93:51–65

    Article  Google Scholar 

  • Parker JE, Crowder DW, Eigenbrode SD, Snyder WE (2016) Trap crop diversity enhances crop yield. Agric Ecosyst Environ 232:254–262

    Article  Google Scholar 

  • Pascual U, Perrings C (2007) Developing incentives and economic mechanisms for in situ biodiversity conservation in agricultural landscapes. Agric Ecosyst Environ 121(3):256–268

    Article  Google Scholar 

  • Perfecto I, Vandermeer JH, Wright AL (2009) Nature’s matrix: linking agriculture, conservation and food sovereignty. Routledge, London

    Book  Google Scholar 

  • Reddy P (2017) Intercropping. In: Reddy P (ed) Agro-ecological approaches to pest management for sustainable agriculture. Springer, Singapore, pp 109–131

    Chapter  Google Scholar 

  • Redlich S, Martin EA, Steffan-Dewenter I (2018) Landscape-level crop diversity benefits biological pest control. J Appl Ecol 55(5):2419–2428

    Article  Google Scholar 

  • Redondo-Brenes A, Montagnini F (2010) Contribution of homegardens, agrosilvopastoral systems, and other human dominated land-use types to the avian diversity of a biological corridor in Costa Rica. Adv Environ Res 2(2):111–148

    Google Scholar 

  • Reij C, Garrity D (2016) Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 48(6):834–843

    Article  Google Scholar 

  • Rejesus RM, Jones MS (2020) Perspective: enhancing economic evaluations and impacts of integrated pest management Farmer Field Schools (IPM-FFS) in low-income countries. Pest Manag Sci 76(11):3527–3536

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CJ (2017) The imperative for regenerative agriculture. Sci Prog 100(1):80–129

    Article  CAS  PubMed  Google Scholar 

  • Rocha P, Niella F, Keller H, Montagnini F, Metzel R, Eibl B, Kornel J, Romero F, López L, Araujo J, Barquinero J (2017) Ecological indigenous (EIK) and scientific (ESK) knowledge integration as a tool for sustainable development in indigenous communities. Experience in Misiones, Argentina. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty. Springer, Cham, pp 235–260

    Chapter  Google Scholar 

  • Salatin J (2010) Sheer ecstasy of being a lunatic farmer. Chelsea Green Publishing, White River Junction

    Google Scholar 

  • Salzman T (2018) The farmworker health landscape: barriers to improving health and safety in US agriculture. Doctoral dissertation, Tufts University, Medford/Somerville

    Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KA (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  • Savory A, Butterfield J (1998) Holistic management: a new framework for decision making. Island press, Washington, DC

    Google Scholar 

  • Saxton DI (2021) The Devil’s fruit: farmworkers, health, and environmental justice. Rutgers University Press, New Brunswick

    Book  Google Scholar 

  • Schreefel L, Schulte RPO, de Boer IJM, Schrijver AP, van Zanten HHE (2020) Regenerative agriculture – the soil is the base. Glob Food Sec 26:100404. https://doi.org/10.1016/j.gfs.2020.100404

    Article  Google Scholar 

  • Schroth G, Lehmann J, Rodrigues MRL, Barros E, Macêdo JL (2001) Plant-soil interactions in multistrata agroforestry in the humid tropics. Agrofor Syst 53(2):85–102

    Article  Google Scholar 

  • Schroth G, Izac AMN, Vasconcelos HL, Gascon C, da Fonseca GA, Harvey CA (eds) (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, New York

    Google Scholar 

  • Shepard M (2013) Restoration agriculture. Acres U.S.A., Austin

    Google Scholar 

  • Shiva V (2000) Tomorrow’s biodiversity. Thames & Hudson, London

    Google Scholar 

  • Shiva V (2020) Reclaiming the commons: biodiversity, indigenous knowledge, and the rights of mother earth. Synergetic Press, Santa Fe

    Google Scholar 

  • Smith RG, Gross KL, Robertson GP (2008) Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11(3):355–366

    Article  Google Scholar 

  • Socci P, Errico A, Castelli G, Penna D, Preti F (2019) Terracing: from agriculture to multiple ecosystem services. In: Oxford research encyclopedia of environmental science. Oxford University Press, Oxford

    Google Scholar 

  • Soloviev ER, Landua G (2016) Levels of regenerative agriculture. https://www.terra-genesis.com/wp-content/uploads/2017/03/Levels-of-Regenerative-Agriculture-1. Accessed Online March 22 2021

  • Swanson T, Goeschl T (2000) Optimal genetic resource conservation: in situ and ex situ. In: Genes in the field: on-farm conservation of crop diversity. International Development Research Centre and International Plant Genetic Resources Institute/Lewis Publishers, Boca Raton, pp 165–191

    Google Scholar 

  • Tavares PD, Uzêda MC, Pires ADS (2019) Biodiversity conservation in agricultural landscapes: the importance of the matrix. Floresta e Ambiente. https://doi.org/10.1590/2179-8087.066417

  • Tilman D (2020) Resource competition and community structure (vol. 17). Princeton University Press. Princeton, New Jersey

    Google Scholar 

  • Toensmeier E (2016) The carbon farming solution: a global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security. Chelsea Green Publishing, White River Junction

    Google Scholar 

  • Toensmeier E (2022) Paradise lot: a temperate-climate urban agroforestry Biodiversity Island. In: Montagnini F (ed) Biodiversity Islands: strategies for conservation in human-dominated environments. Topics in Biodiversity and Conservation. Springer, Cham, pp 439–459

    Google Scholar 

  • Tree I (2019) Wilding: returning nature to our farm. New York Review of Books, London

    Google Scholar 

  • Udawatta R, Rankoth L, Jose S (2019) Agroforestry and biodiversity. Sustainability 11(10):2879

    Article  Google Scholar 

  • Wagg C, Bender SF, Widmer F, Van Der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Nat Acad Sci 111(14):5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner DL (2020) Insect declines in the anthropocene. Annu Rev Entomol 65:457–480

    Article  CAS  PubMed  Google Scholar 

  • White C (2020) Why regenerative agriculture? Am J Econ Soc 79(3):799–812

    Article  Google Scholar 

  • White R, Charlebois E, Martin S (2018) Seed “rematriation”. Panel discussion at the intertribal food sovereignty summit. Pequot Museum and Research Center, 21–23 August 2018, Ledyard, CT, USA

    Google Scholar 

  • Wintle BA, Kujala H, Whitehead A, Cameron A, Veloz S, Kukkala A, Moilanen A, Gordon A, Lentini PE, Cadenhead NC, Bekessy SA (2019) Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc Nat Acad Sci 116(3):909–914

    Article  CAS  PubMed  Google Scholar 

  • Yeomans PA (1958) The challenge of landscape: the development and practice of Keyline. Keyline Pub. Pty, Sydney

    Google Scholar 

  • Young KJ (2017) Mimicking nature: a review of successional agroforestry systems as an analogue to natural regeneration of secondary forest stands. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty. Springer, Cham, pp 179–209

    Chapter  Google Scholar 

  • Zhao ZH, Hui C, Reddy GV, Ouyang F, Men XY, Ge F (2019) Plant species richness controls arthropod food web: evidence from an experimental model system. Ann Entomol Soc Am 112(1):27–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levin, B. (2022). Regenerative Agriculture as Biodiversity Islands. In: Montagnini, F. (eds) Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments. Topics in Biodiversity and Conservation, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-92234-4_3

Download citation

Publish with us

Policies and ethics