Skip to main content

CPSAM: Channel and Position Squeeze Attention Module

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

Abstract

In deep neural networks, how to model the remote dependency on time or space has always been a problem for scholars. By aggregatingpioneering method of capturing remote dependencies. However, the NL network faces many problems; 1) For different query positions in the image, the long-range dependency modeled by the NL network is quite similar so that it’s a wates of computation cost to build pixel-level pairwise relations. 2) The NL network only focuses on capturing spatial-wise lo a ng-range dependencies and neglects channel-wise attention. Therefore, in response to thesquery-specific global context of each query location, Non-Local (NL) networks propose e problems, we propose the Channel and Position Squeeze Attention Module (CPSAM). Specifically, for a feature map of the middle layer, our module infers attention maps along channel and spatial dimensions in parallel. The Channel Squeeze Attention Module selectively joins the feature of different position by a query-independent feature map. Meanwhile, the Position Squeeze Attention Module uses both avg and max pooling to compress the spatial dimension and Integrate the correlation characteristics between all channel maps. Finally, the outputs of two attention modules are combine together through the conv layer to further enhance feature representation. We have achieved higher accuracy and fewer parameters on the cifar100 and ImageNet1k compared to the NL network. The code will be publicly available soon.

Supported by National Key Research and Development Program of China (Grant 2019YFC1521104), National Natural Science Foundation of China (Grant 61972157), Shanghai Municipal Science and Technology Major Project (Grant 2021SHZDZX0102), Shanghai Science and Technology Commission (Grant 21511101200), Art major project of National Social Science Fund (Grant I8ZD22)

Y. Gong, Z. Gu—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3286–3295 (2019)

    Google Scholar 

  2. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  3. Chen, Y., et al.: Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3435–3444 (2019)

    Google Scholar 

  4. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: \(a^{\wedge }2\)-nets: double attention networks. arXiv preprint arXiv:1810.11579 (2018)

  5. Chi, L., Yuan, Z., Mu, Y., Wang, C.: Non-local neural networks with grouped bilinear attentional transforms. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11804–11813 (2020)

    Google Scholar 

  6. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  7. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  10. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. arXiv preprint arXiv:2101.03697 (2021)

  11. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  12. Gao, Z., Xie, J., Wang, Q., Li, P.: Global second-order pooling convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3024–3033 (2019)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hou, Q., Zhang, L., Cheng, M.M., Feng, J.: Strip pooling: rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4003–4012 (2020)

    Google Scholar 

  15. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. arXiv preprint arXiv:2103.02907 (2021)

  16. Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-Excite: exploiting feature context in convolutional neural networks. arXiv preprint arXiv:1810.12348 (2018)

  17. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  18. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  19. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  20. Lee, H., Kim, H.E., Nam, H.: SRM: a style-based recalibration module for convolutional neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1854–1862 (2019)

    Google Scholar 

  21. Liu, J.J., Hou, Q., Cheng, M.M., Wang, C., Feng, J.: Improving convolutional networks with self-calibrated convolutions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10096–10105 (2020)

    Google Scholar 

  22. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Patt. Anal. Mach. Intell. 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  23. Tsotsos, J.K.: A Computational Perspective on Visual Attention. MIT Press, Cambridge (2011)

    Google Scholar 

  24. Tsotsos, J.K., et al.: Analyzing vision at the complexity level. Behav. Brain Sci. 13(3), 423–469 (1990)

    Article  Google Scholar 

  25. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  26. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  27. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  28. Yue, K., Sun, M., Yuan, Y., Zhou, F., Ding, E., Xu, F.: Compact generalized non-local network. arXiv preprint arXiv:1810.13125 (2018)

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  30. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihao Gu or Lizhuang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, Y., Gu, Z., Zhang, Z., Ma, L. (2021). CPSAM: Channel and Position Squeeze Attention Module. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics