Skip to main content

Backstepping and Sliding Mode Control of a Fractional-Order Chaotic System

  • Chapter
  • First Online:
Cybersecurity

Part of the book series: Studies in Big Data ((SBD,volume 102))

  • 605 Accesses

Abstract

Fractional-order systems can come across in chemical processes, biological systems, viscoelastic systems, propagation of electromagnetic waves and electrochemical systems. In the literature, fractional systems are encountered in the modelling and controlling of such systems, synchronization applications, communication, modelling and controlling of power systems or chemical processes. Many methods such as PID, sliding mode control, backstepping control¸ fuzzy sliding mode control, model predictive control, reinforcement learning and adaptive sliding mode control, have been used in the control of such systems. In this study, a fractional-order chaotic system is proposed. For this fractional-order chaotic system, bifurcation, phase portraits and Lyapunov exponents have been calculated to investigate its chaotic status. Then, in order to control the chaotic system, mathematically backstepping and sliding mode method control laws are obtained and their applications are realised. Consequently, their system responses by means of backstepping and sliding mode control results are discussed and compared with each other. Nevertheless, both controllers successfully are be able to regulate the system by obtained control laws, even if the system is out of the chaotic situation for specified fractional-order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. In: Universality in chaos, 2nd edn, pp. 367–378 (1963)

    Google Scholar 

  2. Kassim, S., Hamiche, H., Djennoune, S., Bettayeb, M.: A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dyn. 88(4), 2473–2489 (2017). https://doi.org/10.1007/s11071-017-3390-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Pashaei, S., Badamchizadeh, M.: A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. ISA Trans. 63, 39–48 (2016). https://doi.org/10.1016/J.ISATRA.2016.04.003

    Article  Google Scholar 

  4. Xu, C., Sun, Y., Gao, J., Qiu, T., Zheng, Z., Guan, S.: Synchronization of phase oscillators with frequency-weighted coupling. Sci. Rep.6, 1–9 (2016). https://doi.org/10.1038/srep21926

  5. Singh, A.K., Yadav, V.K., Das, S.: Synchronization between fractional-order complex chaotic systems with uncertainty. Optik (Stuttg) 133, 98–107 (2017). https://doi.org/10.1016/J.IJLEO.2017.01.017

    Article  Google Scholar 

  6. Tavazoei, M.S., Haeri, M., Jafari, S., Bolouki, S., Siami, M.: Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. Ind. Electron. 55(11), 4094–4101 (2008). https://doi.org/10.1109/TIE.2008.925774

    Article  Google Scholar 

  7. Vaidyanathan, S., et al.: A 5-D multi-stable hyperchaotic two-disk dynamo system with no equilibrium point: Circuit design, FPGA realization and applications to TRNGs and image encryption. IEEE Access 9, 81352–81369 (2021). https://doi.org/10.1109/ACCESS.2021.3085483

    Article  Google Scholar 

  8. Sambas, A., et al.: A 3-D multi-stable system with a peanut-shaped equilibrium curve: circuit design, FPGA realization, and an application to image encryption. IEEE Access 8, 137116–137132 (2020). https://doi.org/10.1109/ACCESS.2020.3011724

    Article  Google Scholar 

  9. Tsafack, N., et al.: A new chaotic map with dynamic analysis and encryption application in internet of health things. IEEE Access 8, 137731–137744 (2020). https://doi.org/10.1109/ACCESS.2020.3010794

    Article  Google Scholar 

  10. Tsafack, N., Kengne, J., Abd-El-Atty, B., Iliyasu, A.M., Hirota, K., Abd EL-Latif, A.A.: Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf. Sci. (NY)515, 191–217 (2020). https://doi.org/10.1016/j.ins.2019.10.070

  11. Tsafack, N., et al.: A memristive RLC oscillator dynamics applied to image encryption. J. Inf. Secur. Appl.61, 102944 (2021). https://doi.org/10.1016/j.jisa.2021.102944

  12. Akgül, A., Rajagopal, K., Durdu, A., Pala, M.A., Boyraz, Ö.F., Yildiz, M.Z.: A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application. Chaos Solitons Fractals 152, 111306 (2021). https://doi.org/10.1016/j.chaos.2021.111306

  13. Ni, J., Liu, L., Liu, C., Hu, X.: Fractional-order fixed-time nonsingular terminal sliding mode synchronization and control of fractional-order chaotic systems. Nonlinear Dyn. 89(3), 2065–2083 (2017). https://doi.org/10.1007/S11071-017-3570-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Pahnehkolaei, S.M.A., Alfi, A., Machado, J.A.T.: Fuzzy logic embedding of fractional-order sliding mode and state feedback controllers for synchronization of uncertain fractional chaotic systems. Comput. Appl. Math. 39(3), 1–16 (2020). https://doi.org/10.1007/s40314-020-01206-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Laarem, G.: A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional-order model and chaos synchronization using optimized fractional-order sliding mode control. Chaos Solitons Fractals X, 100063 (2021). https://doi.org/10.1016/J.CSFX.2021.100063

  16. Mirrezapour, S.Z., Zare, A.: A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances. JVC/J. Vib. Control (2021). https://doi.org/10.1177/1077546320982453

  17. Soukkou, A., Boukabou, A., Leulmi, S.: Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems. Nonlinear Dyn. 85(4), 2183–2206 (2016). https://doi.org/10.1007/S11071-016-2823-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Asemani, M.H., Majd, V.J.: Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI. Chaos Solitons Fractals 42(2), 1126–1135 (2009). https://doi.org/10.1016/J.CHAOS.2009.03.012

    Article  MathSciNet  MATH  Google Scholar 

  19. Mofid, O., Mobayen, S., Khooban, M.H.: Sliding mode disturbance observer control based on adaptive synchronization in a class of fractional‐order chaotic systems. Wiley Online Libr.33(3), 462–474 (2019). https://doi.org/10.1002/acs.2965

  20. Jiang, C., Zada, A., Şenel, M.T., Li, T.: Synchronization of bidirectional N-coupled fractional-order chaotic systems with ring connection based on antisymmetric structure. Adv. Differ. Equ. 2019(1), 1–16 (2019). https://doi.org/10.1186/s13662-019-2380-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Danca, M.F.: Hidden chaotic attractors in fractional-order systems. Nonlinear Dyn. 89(1), 577–586 (2017). https://doi.org/10.1007/S11071-017-3472-7

    Article  MathSciNet  Google Scholar 

  22. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: theory. Meccanica 15(1), 9–20 (1980). https://doi.org/10.1007/BF02128236

    Article  MATH  Google Scholar 

  23. Balcerzak, M., Pikunov, D., Dabrowski, A.: The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dyn. 94(4), 3053–3065 (2018). https://doi.org/10.1007/s11071-018-4544-z

    Article  Google Scholar 

  24. Dabrowski, A.: Estimation of the largest Lyapunov exponent from the perturbation vector and its derivative dot product. Nonlinear Dyn. 67(1), 283–291 (2012). https://doi.org/10.1007/s11071-011-9977-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Balcerzak, M., Pikunov, D.: The fastest, simplified method of estimation of the largest Lyapunov exponent for continuous dynamical systems with time delay. Mech. Mech. Eng. 21(4), 985–994 (2017)

    Google Scholar 

  26. Danca, M.F., Kuznetsov, N.: Matlab code for Lyapunov exponents of fractional-order systems. Int. J. Bifurc. Chaos 28(5), 1–14 (2018). https://doi.org/10.1142/S0218127418500670

    Article  MathSciNet  MATH  Google Scholar 

  27. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional-order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014). https://doi.org/10.1016/j.cnsns.2014.01.022

    Article  MathSciNet  MATH  Google Scholar 

  28. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier (1998)

    Google Scholar 

  29. Gatto, A.E.: Product rule and chain rule estimates for fractional derivatives on spaces that satisfy the doubling condition. J. Funct. Anal. 188(1), 27–37 (2002). https://doi.org/10.1006/jfan.2001.3836

    Article  MathSciNet  MATH  Google Scholar 

  30. Fujiwara, K., Georgiev, V., Ozawa, T.: Higher order fractional Leibniz rule. J. Fourier Anal. Appl. 24(3), 650–665 (2018). https://doi.org/10.1007/S00041-017-9541-Y

    Article  MathSciNet  MATH  Google Scholar 

  31. Nyamoradi, N., Javidi, M.: Sliding mode control of uncertain unified chaotic fractional-order new lorenz-like system. Dyn. Contin. Discret. Impuls. Syst. Ser. B Appl. Algorithms 20(1), 63–82 (2013)

    Google Scholar 

  32. Yuan, J., Shi, B., Zeng, X., Ji, W., Pan, T.: Sliding mode control of the fractional-order unified chaotic system. Abstr. Appl. Anal.2013 (2013). https://doi.org/10.1155/2013/397504

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akif Akgul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akgul, A., Cimen, M.E., Pala, M.A., Akmese, O.F., Kor, H., Boz, A.F. (2022). Backstepping and Sliding Mode Control of a Fractional-Order Chaotic System. In: Abd El-Latif, A.A., Volos, C. (eds) Cybersecurity. Studies in Big Data, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-92166-8_3

Download citation

Publish with us

Policies and ethics