Skip to main content

Biogenetically Engineered Insect-Resistant Crops in Integrated Pest Management Programs

  • Chapter
  • First Online:
Molecular Advances in Insect Resistance of Field Crops
  • 412 Accesses

Abstract

The genetically engineered (GE) cultivars for sustainable agriculture is the key focus of today’s biotechnological industries. GE developed cultivars play an important role in ensuring the efficient management of insect pests utilizing an integrated approach important for food security, agricultural sustainability, and environmental protection. These crops that provide protection against insects and diseases are important tools that complement an integrated pest management technology (IPMT) strategy. Presently grown crop varieties have many disadvantages such as losses in yield, being susceptible to pests, overuse of pesticides, and pollution of soil, water, and environment. However, at present, it seems that the use of renewable resources, especially GE cultivars, has the capacity to replace the traditional plant varieties having sustainable traits such as lower production costs, fewer pest problems, reduced use of pesticides, and better yields—compared with conventional crops. This chapter highlights the present status and future scope of integrating biogenetically engineered cultivars in the integrated pest management technology programs for insect pest management in field crops. Genetically engineered cultivars, which are developed by gene editing biotechnology, may provide a preventive defense against insect pests and plant diseases, a suitable alternative crop system for blending in IPMT program, in the future agro-industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agricultural Biotechnology Stewardship Technical Committee (ABSTC) (2016) ABSTC/EPA compliance assurance program report presentation. AIS Subcommittee

    Google Scholar 

  • Alemu M (2020) Trends of biotechnology applications in pest management: a review. Int J Appl Sci Biotechnol 8(2):108–131

    Article  Google Scholar 

  • Anderson JA, Gipmans M, Hurst S, Layton R, Nehra N, Pickett J (2016) Emerging agricultural biotechnologies for sustainable agriculture and food security. J Agric Food Chem 64:383–393

    Article  CAS  PubMed  Google Scholar 

  • Anderson JA, Ellsworth PC, Faria JC, Head GP, Owen MDK, Pilcher CD, Shelton AM, Meissle M (2019) Genetically engineered crops: importance of diversified integrated pest management for agricultural sustainability. Front Bioeng Biotechnol 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardi D, Salmeron E, Horikoshi RJ, Bernardi O, Dourado PM, Carvalho RA (2015) Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS One 10:e0140130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco C, Chiaravalle W, Dalla-Rizza M, Farias J, García-Degano M, Gastaminza G (2016) Current situation of pests targeted by Bt crops in Latin America. Curr Opin Insect Sci 15:131–138

    Article  CAS  PubMed  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO, Mendes ÉA, Aragão FJ (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2013) The global income and production effects of genetically modified (GM) crops 1996–2011. GM Crops Food 4:74–83

    Article  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2016) Global income and production impacts of using GM crop technology 1996–2014. GM Crops Food 7:38–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JC (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619

    Article  CAS  PubMed  Google Scholar 

  • Canadian Corn Pest Coalition (CCPC) (2018) Are Canadian growers following IRM? https://www.cornpest.ca/resistance-management/are-canadian-growers-following-irm/. Accessed 5 Feb 2019

  • Choudhary B, Gaur K (2008) The development and regulation of Bt brinjal in India (eggplant/Aubergine). ISAAA, Ithaca, NY

    Google Scholar 

  • Comissão Técnica Nacional de Biossegurança (CTNBio) (2011) Extrato de Parecer N° 3024/2011. http://ctnbio.mcti.gov.br/documents/566529/686135/Extrato+de+Parecer+n%C2%BA%203024.2011.pdf/af87fca4-9b8c-48b4-834c cb890ca258d9?version=1.0. Accessed 16 Mar 2016

  • Cornell University (2018) Feed the Future South Asia Eggplant Improvement Partnership. https://bteggplant.cornell.edu/. Accessed 5 Feb 2019

  • De Faria J, Aragao F, Souza T, Quintela E, Kitajima E, Ribeiro SG (2016) Golden mosaic of common beans in Brazil: management with a transgenic approach. APS Features-10. https://doi.org/10.1094/APSFeature-2016-10. Accessed 5 Feb 2019

  • Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67:898–903

    Article  CAS  PubMed  Google Scholar 

  • Dively GP, Venugopal PD, Bean D, Whalen J, Holmstrom K, Kuhar TP (2018) Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc Natl Acad Sci U S A 115:3320–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellsworth PC, Fournier A, Frisvold G, Naranjo SE (2017) Chronicling the socio-economic impact of integrating biological control, technology, and knowledge over 25 years of IPM in Arizona. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of the 5th international symposium on biological control of arthropods. CABI, Langkawi, pp 214–216

    Google Scholar 

  • Ervin DE, Frisvold GB (2016) Community-based approaches to herbicide-resistant weed management: lessons from science and practice. Weed Sci 64:602–626

    Article  Google Scholar 

  • Ervin D, Jussaume R (2014) Integrating social science into managing herbicide-resistant weeds and associated environmental impacts. Weed Sci 62:403–414

    Article  CAS  Google Scholar 

  • FAO (2018) AGP-integrated pest management. www.FAO.org/agriculture/crops/thematic-sitemap/theme/pests/ipm. Accessed 5 Feb 2019

  • Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, Santos AC (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protect 64:150–158

    Article  Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ, Bernardi D, Ribeiro RDS (2016) Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 72:2295–2302

    Article  CAS  PubMed  Google Scholar 

  • Francisco S (2009) Costs and benefits of UPLB Bt eggplant with resistance to fruit and shoot borer in the Philippines, projected impacts of agricultural biotechnologies for fruits and vegetables in the Philippines and Indonesia. International Services for the Acquisition of Agri-Biotech Applications and the Southeast Asian Ministers of Education Organization-Southeast Asia Regional Center for Graduate Study and Research in Agriculture, Ithaca, NY

    Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6:e22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, Ingber DA (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc Natl Acad Sci U S A 111:5141–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould F, Amasino RM, Brossard D, Buell CR, Dixon RA, Falck-Zepeda JB (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC

    Google Scholar 

  • Hossain A, Menon S (2018) Stewardship efforts through capacity building initiatives for seed quality testing. https://bteggplant.cornell.edu/content/news/blog/stewardship-efforts-through-capacity-building-initiatives-seed-quality-testing. Accessed 29 Mar 2018

  • Huang F, Qureshi JA, Meagher RL Jr, Reisig DD, Head GP, Andow DA (2014) Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9:e112958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ (2010) Area-wide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/GM crops: 2017. ISAAA brief no. 53. ISAAA, Ithaca, NY

    Google Scholar 

  • ISAAA (2019) ISAAA’s GM approval database. www.isaaa.org/gmapprovaldatabase. Accessed 5 Feb 2019

  • Kaur R, Bharti U, Tanda AS (2021) Concept of CRISPR-CAS9 system and its application on insect genome: a preliminary review. In: Tanda AS (ed) Molecular advances in insect resistance of field crops. Springer, New York

    Google Scholar 

  • Liu X, Chen M, Collins HL, Onstad DW, Roush RT, Zhang Q et al (2014) Natural enemies delay insect resistance to Bt crops. PLoS One 9:e90366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H et al (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362

    Article  CAS  PubMed  Google Scholar 

  • Matten SR, Head GP, Quemada HD (2008) How governmental regulation can help or hinder the integration of Bt crops within IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 27–39

    Chapter  Google Scholar 

  • Meissle M (2016) How to assess the role of genetically engineered crops in integrated plant production? IOBC-WPRS Bull 114:23–29

    Google Scholar 

  • Naranjo SE, Ellsworth PC (2009a) The contribution of conservation biological control to integrated management of Bemisia tabaci in cotton. Biol Control 51:458–470. https://doi.org/10.1016/j.biocontrol.2009.08.006

    Article  Google Scholar 

  • Naranjo SE, Ellsworth PC (2009b) Fifty years of the integrated control concept: moving the model implementation forward in Arizona. Pest Manag Sci 65:1267–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naranjo SE, Ellsworth PC (2010) Fourteen years of Bt cotton advances IPM in Arizona. Southwestern Entomol 35:437–444

    Article  Google Scholar 

  • Naranjo SE, Ellsworth PC, Frisvold G (2015) Economic value of biological control in IPM of managed plant systems. Annu Rev Entomol 60:621–645

    Article  CAS  PubMed  Google Scholar 

  • Navasero MV, Candano RN, Hautea DM, Hautea RA, Shotkoski FA, Shelton AM (2016) Assessing potential impact of Bt eggplants on non-target arthropods in the Philippines. PLoS One 11:e0165190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OECD (2018) Integrated pest management hub. https://www.oecd.org/chemicalsafety/integrated-pest-management/. Accessed 5 Feb 2019

  • Omoto C, Bernardi O, Salmeron E, Sorgatto RJ, Dourado PM, Crivellari A et al (2016) Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci 72:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Owen MDK (2016) Diverse approaches to herbicide-resistant weed management. Weed Sci 64:570–584

    Article  Google Scholar 

  • Palumbo JC, Castle SJ (2009) IPM for fresh-market lettuce production in the desert southwest: the produce paradox. Pest Manag Sci 65:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Naranjo SE, Meissle M, Shelton AM (2018) Genetically engineered crops help support conservation biological control. Biol Control 130:136–154

    Article  Google Scholar 

  • Shelton A (2010) The long road to commercialization of Bt brinjal (eggplant) in India. Crop Protect 29:412–414

    Article  Google Scholar 

  • Shelton AM, Fuchs M, Shotkowski F (2008) Transgenic vegetables and fruits for control of insect and insect-vectored pathogens. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM Programs. Springer, Dordrecht, pp 249–272

    Chapter  Google Scholar 

  • Shelton AM, Hokanson KE, Hautea DM, Hossain MJ, Hossain MA, Paranjape V. et al. (2017) ISB news report-August 2017-Bt eggplant: a genetically engineered ‘minor’ crop comes of age in Bangladesh and the Philippines. ISB Report. http://hdl.handle.net/10919/78874. Accessed 5 Feb 2019

  • Shelton A, Hossain M, Paranjape V, Azad A (2018) Bt eggplant project in Bangladesh: history, present status, and future direction. Front Bioeng Biotechnol 6:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrinho RR, Xavier CAD, De Barros Pereira HM, De Andrade Lima GS, Assunção IP, Mizubuti ESG et al (2014) Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. J Gen Virol 95:2540–2552

    Article  CAS  PubMed  Google Scholar 

  • Souza TLP, Faria JC, Aragão FJ, Del Peloso MJ, Faria LC, Wendland A et al (2018) Agronomic performance and yield stability of the RNA interference-based Bean golden mosaic virus-resistant Common Bean. Crop Sci 58:1–13

    Article  CAS  Google Scholar 

  • Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW et al (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038

    Article  PubMed  Google Scholar 

  • Storer NP, Kubiszak ME, King JE, Thompson GD, Santos AC (2012) Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J Inverteb Pathol 110:294–300

    Article  Google Scholar 

  • Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L, Liesner L et al (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Morin S, Unnithan GC, Yelich AJ, Ellers-Kirk C, Harpold VS et al (2012) Sustained susceptibility of pink bollworm to Bt cotton in the United States. GM Crops Food 3:194–200

    Article  PubMed  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510

    Article  CAS  PubMed  Google Scholar 

  • Tanda AS (2019) Entomophilous crops get better fruit quality and yield: an appraisal. Indian J Entomol 81(2):227–234

    Article  Google Scholar 

  • Tanda AS (2020) Biogenetic engineering in developing insect resistant crops: constraints and applications. 5th Edition of Global Congress on Plant Biology and Biotechnology (GPB 2020), 11–13 Nov 2020, Valencia, Spain

  • Tanda AS (2021a) Insect pollinators matter in sustainable world food production. Indian J Entomol. Accepted for publication

    Google Scholar 

  • Tanda AS (2021b) Integrated pest management technology and biogenetic engineered crops: challenges and solutions. Int J Pest Manage. Accepted for publication

    Google Scholar 

  • Tian J-C, Yao J, Long L-P, Romeis J, Shelton AM (2015) Bt crops benefit natural enemies to control non-target pests. Sci Rep 5:16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA (2018) USDA announces pink bollworm eradication significantly saving cotton farmers in yearly control costs. https://www.usda.gov/media/press-releases/2018/10/19/usda-announces-pink-bollworm-eradication-significantly-saving. Accessed 5 Feb 2019

  • Vélez AM, Vellichirammal NN, Jurat-Fuentes JL, Siegfried BD (2016) Cry1F resistance among lepidopteran pests: a model for improved resistance management? Curr Opin Insect Sci 15:116–124

    Article  PubMed  Google Scholar 

  • Wijnands FG, Baur R, Malavolta C, Gerowitt B (2012) Integrated pest management – design and application of feasible and effective strategies. In: IOBC-WPRS 2012: integrated pest management: the way forward to sustainable agricultural production; Proceedings of the conference on reducing pesticide dependency, commemorating the 50th anniversary of Rachel Carson’s “Silent Spring”. IOBC/WPRS Bulletin, Lelystad

    Google Scholar 

  • Wilson LJ, Whitehouse ME, Herron GA (2018) The management of insect pests in Australian cotton: an evolving story. Annu Rev Entomol 63:215–237

    Article  CAS  PubMed  Google Scholar 

  • Wu K-M, Lu Y-H, Feng H-Q, Jiang Y-Y, Zhao J-Z (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–1678

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Kerns DL, Brown S, Kurtz R, Dennehy T, Braxton B (2016) Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management. Sci Rep 6:28059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanda, A.S. (2022). Biogenetically Engineered Insect-Resistant Crops in Integrated Pest Management Programs. In: Tanda, A.S. (eds) Molecular Advances in Insect Resistance of Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-92152-1_10

Download citation

Publish with us

Policies and ethics