Abstract
The genetically engineered (GE) cultivars for sustainable agriculture is the key focus of today’s biotechnological industries. GE developed cultivars play an important role in ensuring the efficient management of insect pests utilizing an integrated approach important for food security, agricultural sustainability, and environmental protection. These crops that provide protection against insects and diseases are important tools that complement an integrated pest management technology (IPMT) strategy. Presently grown crop varieties have many disadvantages such as losses in yield, being susceptible to pests, overuse of pesticides, and pollution of soil, water, and environment. However, at present, it seems that the use of renewable resources, especially GE cultivars, has the capacity to replace the traditional plant varieties having sustainable traits such as lower production costs, fewer pest problems, reduced use of pesticides, and better yields—compared with conventional crops. This chapter highlights the present status and future scope of integrating biogenetically engineered cultivars in the integrated pest management technology programs for insect pest management in field crops. Genetically engineered cultivars, which are developed by gene editing biotechnology, may provide a preventive defense against insect pests and plant diseases, a suitable alternative crop system for blending in IPMT program, in the future agro-industry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agricultural Biotechnology Stewardship Technical Committee (ABSTC) (2016) ABSTC/EPA compliance assurance program report presentation. AIS Subcommittee
Alemu M (2020) Trends of biotechnology applications in pest management: a review. Int J Appl Sci Biotechnol 8(2):108–131
Anderson JA, Gipmans M, Hurst S, Layton R, Nehra N, Pickett J (2016) Emerging agricultural biotechnologies for sustainable agriculture and food security. J Agric Food Chem 64:383–393
Anderson JA, Ellsworth PC, Faria JC, Head GP, Owen MDK, Pilcher CD, Shelton AM, Meissle M (2019) Genetically engineered crops: importance of diversified integrated pest management for agricultural sustainability. Front Bioeng Biotechnol 7:24
Bernardi D, Salmeron E, Horikoshi RJ, Bernardi O, Dourado PM, Carvalho RA (2015) Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS One 10:e0140130
Blanco C, Chiaravalle W, Dalla-Rizza M, Farias J, García-Degano M, Gastaminza G (2016) Current situation of pests targeted by Bt crops in Latin America. Curr Opin Insect Sci 15:131–138
Bonfim K, Faria JC, Nogueira EO, Mendes ÉA, Aragão FJ (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact 20:717–726
Brookes G, Barfoot P (2013) The global income and production effects of genetically modified (GM) crops 1996–2011. GM Crops Food 4:74–83
Brookes G, Barfoot P (2016) Global income and production impacts of using GM crop technology 1996–2014. GM Crops Food 7:38–77
Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JC (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619
Canadian Corn Pest Coalition (CCPC) (2018) Are Canadian growers following IRM? https://www.cornpest.ca/resistance-management/are-canadian-growers-following-irm/. Accessed 5 Feb 2019
Choudhary B, Gaur K (2008) The development and regulation of Bt brinjal in India (eggplant/Aubergine). ISAAA, Ithaca, NY
Comissão Técnica Nacional de Biossegurança (CTNBio) (2011) Extrato de Parecer N° 3024/2011. http://ctnbio.mcti.gov.br/documents/566529/686135/Extrato+de+Parecer+n%C2%BA%203024.2011.pdf/af87fca4-9b8c-48b4-834c cb890ca258d9?version=1.0. Accessed 16 Mar 2016
Cornell University (2018) Feed the Future South Asia Eggplant Improvement Partnership. https://bteggplant.cornell.edu/. Accessed 5 Feb 2019
De Faria J, Aragao F, Souza T, Quintela E, Kitajima E, Ribeiro SG (2016) Golden mosaic of common beans in Brazil: management with a transgenic approach. APS Features-10. https://doi.org/10.1094/APSFeature-2016-10. Accessed 5 Feb 2019
Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67:898–903
Dively GP, Venugopal PD, Bean D, Whalen J, Holmstrom K, Kuhar TP (2018) Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc Natl Acad Sci U S A 115:3320–3325
Ellsworth PC, Fournier A, Frisvold G, Naranjo SE (2017) Chronicling the socio-economic impact of integrating biological control, technology, and knowledge over 25 years of IPM in Arizona. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of the 5th international symposium on biological control of arthropods. CABI, Langkawi, pp 214–216
Ervin DE, Frisvold GB (2016) Community-based approaches to herbicide-resistant weed management: lessons from science and practice. Weed Sci 64:602–626
Ervin D, Jussaume R (2014) Integrating social science into managing herbicide-resistant weeds and associated environmental impacts. Weed Sci 62:403–414
FAO (2018) AGP-integrated pest management. www.FAO.org/agriculture/crops/thematic-sitemap/theme/pests/ipm. Accessed 5 Feb 2019
Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, Santos AC (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protect 64:150–158
Farias JR, Andow DA, Horikoshi RJ, Bernardi D, Ribeiro RDS (2016) Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 72:2295–2302
Francisco S (2009) Costs and benefits of UPLB Bt eggplant with resistance to fruit and shoot borer in the Philippines, projected impacts of agricultural biotechnologies for fruits and vegetables in the Philippines and Indonesia. International Services for the Acquisition of Agri-Biotech Applications and the Southeast Asian Ministers of Education Organization-Southeast Asia Regional Center for Graduate Study and Research in Agriculture, Ithaca, NY
Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6:e22629
Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, Ingber DA (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc Natl Acad Sci U S A 111:5141–5146
Gould F, Amasino RM, Brossard D, Buell CR, Dixon RA, Falck-Zepeda JB (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC
Hossain A, Menon S (2018) Stewardship efforts through capacity building initiatives for seed quality testing. https://bteggplant.cornell.edu/content/news/blog/stewardship-efforts-through-capacity-building-initiatives-seed-quality-testing. Accessed 29 Mar 2018
Huang F, Qureshi JA, Meagher RL Jr, Reisig DD, Head GP, Andow DA (2014) Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9:e112958
Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ (2010) Area-wide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225
ISAAA (2017) Global status of commercialized biotech/GM crops: 2017. ISAAA brief no. 53. ISAAA, Ithaca, NY
ISAAA (2019) ISAAA’s GM approval database. www.isaaa.org/gmapprovaldatabase. Accessed 5 Feb 2019
Kaur R, Bharti U, Tanda AS (2021) Concept of CRISPR-CAS9 system and its application on insect genome: a preliminary review. In: Tanda AS (ed) Molecular advances in insect resistance of field crops. Springer, New York
Liu X, Chen M, Collins HL, Onstad DW, Roush RT, Zhang Q et al (2014) Natural enemies delay insect resistance to Bt crops. PLoS One 9:e90366
Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H et al (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154
Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362
Matten SR, Head GP, Quemada HD (2008) How governmental regulation can help or hinder the integration of Bt crops within IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 27–39
Meissle M (2016) How to assess the role of genetically engineered crops in integrated plant production? IOBC-WPRS Bull 114:23–29
Naranjo SE, Ellsworth PC (2009a) The contribution of conservation biological control to integrated management of Bemisia tabaci in cotton. Biol Control 51:458–470. https://doi.org/10.1016/j.biocontrol.2009.08.006
Naranjo SE, Ellsworth PC (2009b) Fifty years of the integrated control concept: moving the model implementation forward in Arizona. Pest Manag Sci 65:1267–1286
Naranjo SE, Ellsworth PC (2010) Fourteen years of Bt cotton advances IPM in Arizona. Southwestern Entomol 35:437–444
Naranjo SE, Ellsworth PC, Frisvold G (2015) Economic value of biological control in IPM of managed plant systems. Annu Rev Entomol 60:621–645
Navasero MV, Candano RN, Hautea DM, Hautea RA, Shotkoski FA, Shelton AM (2016) Assessing potential impact of Bt eggplants on non-target arthropods in the Philippines. PLoS One 11:e0165190
OECD (2018) Integrated pest management hub. https://www.oecd.org/chemicalsafety/integrated-pest-management/. Accessed 5 Feb 2019
Omoto C, Bernardi O, Salmeron E, Sorgatto RJ, Dourado PM, Crivellari A et al (2016) Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci 72:1727–1736
Owen MDK (2016) Diverse approaches to herbicide-resistant weed management. Weed Sci 64:570–584
Palumbo JC, Castle SJ (2009) IPM for fresh-market lettuce production in the desert southwest: the produce paradox. Pest Manag Sci 65:1311–1320
Romeis J, Naranjo SE, Meissle M, Shelton AM (2018) Genetically engineered crops help support conservation biological control. Biol Control 130:136–154
Shelton A (2010) The long road to commercialization of Bt brinjal (eggplant) in India. Crop Protect 29:412–414
Shelton AM, Fuchs M, Shotkowski F (2008) Transgenic vegetables and fruits for control of insect and insect-vectored pathogens. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM Programs. Springer, Dordrecht, pp 249–272
Shelton AM, Hokanson KE, Hautea DM, Hossain MJ, Hossain MA, Paranjape V. et al. (2017) ISB news report-August 2017-Bt eggplant: a genetically engineered ‘minor’ crop comes of age in Bangladesh and the Philippines. ISB Report. http://hdl.handle.net/10919/78874. Accessed 5 Feb 2019
Shelton A, Hossain M, Paranjape V, Azad A (2018) Bt eggplant project in Bangladesh: history, present status, and future direction. Front Bioeng Biotechnol 6:106
Sobrinho RR, Xavier CAD, De Barros Pereira HM, De Andrade Lima GS, Assunção IP, Mizubuti ESG et al (2014) Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. J Gen Virol 95:2540–2552
Souza TLP, Faria JC, Aragão FJ, Del Peloso MJ, Faria LC, Wendland A et al (2018) Agronomic performance and yield stability of the RNA interference-based Bean golden mosaic virus-resistant Common Bean. Crop Sci 58:1–13
Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW et al (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038
Storer NP, Kubiszak ME, King JE, Thompson GD, Santos AC (2012) Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J Inverteb Pathol 110:294–300
Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926
Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L, Liesner L et al (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28:1304–1307
Tabashnik BE, Morin S, Unnithan GC, Yelich AJ, Ellers-Kirk C, Harpold VS et al (2012) Sustained susceptibility of pink bollworm to Bt cotton in the United States. GM Crops Food 3:194–200
Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510
Tanda AS (2019) Entomophilous crops get better fruit quality and yield: an appraisal. Indian J Entomol 81(2):227–234
Tanda AS (2020) Biogenetic engineering in developing insect resistant crops: constraints and applications. 5th Edition of Global Congress on Plant Biology and Biotechnology (GPB 2020), 11–13 Nov 2020, Valencia, Spain
Tanda AS (2021a) Insect pollinators matter in sustainable world food production. Indian J Entomol. Accepted for publication
Tanda AS (2021b) Integrated pest management technology and biogenetic engineered crops: challenges and solutions. Int J Pest Manage. Accepted for publication
Tian J-C, Yao J, Long L-P, Romeis J, Shelton AM (2015) Bt crops benefit natural enemies to control non-target pests. Sci Rep 5:16636
USDA (2018) USDA announces pink bollworm eradication significantly saving cotton farmers in yearly control costs. https://www.usda.gov/media/press-releases/2018/10/19/usda-announces-pink-bollworm-eradication-significantly-saving. Accessed 5 Feb 2019
Vélez AM, Vellichirammal NN, Jurat-Fuentes JL, Siegfried BD (2016) Cry1F resistance among lepidopteran pests: a model for improved resistance management? Curr Opin Insect Sci 15:116–124
Wijnands FG, Baur R, Malavolta C, Gerowitt B (2012) Integrated pest management – design and application of feasible and effective strategies. In: IOBC-WPRS 2012: integrated pest management: the way forward to sustainable agricultural production; Proceedings of the conference on reducing pesticide dependency, commemorating the 50th anniversary of Rachel Carson’s “Silent Spring”. IOBC/WPRS Bulletin, Lelystad
Wilson LJ, Whitehouse ME, Herron GA (2018) The management of insect pests in Australian cotton: an evolving story. Annu Rev Entomol 63:215–237
Wu K-M, Lu Y-H, Feng H-Q, Jiang Y-Y, Zhao J-Z (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–1678
Yang F, Kerns DL, Brown S, Kurtz R, Dennehy T, Braxton B (2016) Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management. Sci Rep 6:28059
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Tanda, A.S. (2022). Biogenetically Engineered Insect-Resistant Crops in Integrated Pest Management Programs. In: Tanda, A.S. (eds) Molecular Advances in Insect Resistance of Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-92152-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-92152-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92151-4
Online ISBN: 978-3-030-92152-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)