Skip to main content

Electro-thermal and Mechanical Optimization of a Concentrated Solar Thermoelectric Generator

  • Conference paper
  • First Online:
Mitigating Climate Change (TELAC 2021)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

Abstract

Solar thermoelectric generator (STEG) is a relatively less efficient direct energy conversion device which converts input solar heat directly into electricity based on thermoelectric effects. A comprehensive model consisting the detailed electrical, thermodynamic and mechanical analysis of STEG is still missing in the literature. Thus, this paper presents a numerical model and analysis of a hybrid solar thermoelectric generator. The hybrid system is made up of a compound parabolic concentrator (CPC) attached to a thermoelectric module (TEM). A three-dimensional finite element model is developed and employed in analysing the hybrid system for varying concentrated solar irradiation and external load resistance. The optimum external load resistance, current, voltage and heat absorption rate required to maximise the electrical and thermodynamic performance of the device are obtained. The results in this study will provide useful information in the design of power generation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Thermeoelement area (m2)

C :

Concentration ratio

E :

Electric field intensity (V/m)

G :

Global solar irradiance (W/m2)

I m :

Matched load current (A)

J :

Current density (A/m2)

R L :

Load Resistance (\(\Omega\))

S :

Seebeck coefficient (V/K)

\(u^{^{\prime} \prime \prime }\) :

Joule heat (W/m3)

W m :

Matched load power (W)

V m :

Matched load voltage (V)

q″:

Concentrated solar irradiance (W/m2)

\(\eta_m\) :

Matched load efficiency

\(\tau\) :

Thomson coefficient (V/K)

References

  1. C.A. Mgbemene, J. Duffy, H. Sun, S.O. Onyegegbu, Electricity generation from a compound parabolic concentrator coupled to a thermoelectric module. J. Sol. Energy Eng. 132, 0310151–0310158 (2010). https://doi.org/10.1115/1.4001670

    Article  Google Scholar 

  2. C.A. Mgbemene, H.O. Njoku, Investigation of parametric performance of the hybrid 3D CPC/TEM system due to thermoelectric irreversibilities. Front. Energy Res. 6, 1–11 (2018). https://doi.org/10.3389/fenrg.2018.00101

    Article  Google Scholar 

  3. L.L. Baranowski, E.L. Warren, E.S. Toberer, High-temperature high-efficiency solar thermoelectric generators. J. Electron. Mater. 43, 2348–2355 (2014). https://doi.org/10.1007/s11664-014-3063-z

    Article  Google Scholar 

  4. W.H. Chen, C.C. Wang, C.I. Hung, C.C. Yang, R.C. Juang, Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy 64, 287–297 (2014). https://doi.org/10.1016/j.energy.2013.10.073

    Article  Google Scholar 

  5. P. Cheruvu, V.P. Kumar, H.C. Barshilia, Experimental analysis and evaluation of a vacuum enclosed concentrated solar thermoelectric generator coupled with a spectrally selective absorber coating. Int. J. Sustain. Energy 37, 782–798 (2017). https://doi.org/10.1080/14786451.2017.1365866

    Article  Google Scholar 

  6. R. Lamba, S. Manikandan, S.C. Kaushik, Performance analysis and optimization of concentrating solar thermoelectric generator. J. Electron. Mater. 47, 5310–5320 (2018). https://doi.org/10.1007/s11664-018-6410-7

    Article  Google Scholar 

  7. J. Xiao, T. Yang, P. Li, P. Zhai, Q. Zhang, Thermal design and management for performance optimization of solar thermoelectric generator. Appl. Energy 93, 33–38 (2012). https://doi.org/10.1016/j.apenergy.2011.06.006

    Article  Google Scholar 

  8. L. Liu, X.S. Lu, M.L. Shi, Y.K. Ma, J.Y. Shi, Modeling of flat-plate solar thermoelectric generators for space applications. Sol. Energy 132, 386–394 (2016). https://doi.org/10.1016/j.solener.2016.03.028

  9. H.B. Liu, J.H. Meng, X.D. Wang, W.H. Chen, A new design of solar thermoelectric generator with combination of segmented materials and asymmetrical legs. Energy Convers. Manag. 175, 11–20 (2018). https://doi.org/10.1016/j.enconman.2018.08.095

    Article  Google Scholar 

  10. L. Li, X. Gao, G. Zhang, W. Xie, F. Wang, W. Yao, Combined solar concentration and carbon nanotube absorber for high performance solar thermoelectric generators. Energy Convers. Manag. 183, 109–115 (2019). https://doi.org/10.1016/j.enconman.2018.12.104

    Article  Google Scholar 

  11. W. He, G. Zhang, G. Li, J. Ji, Analysis and discussion on the impact of non-uniform input heat flux on thermoelectric generator array. Energy Convers. Manag. 98, 268–274 (2015). https://doi.org/10.1016/j.enconman.2015.04.006

    Article  Google Scholar 

  12. S. Shittu, G. Li, Q. Xuan, X. Xiao, X. Zhao, X. Ma, Transient and non-uniform heat flux effect on solar thermoelectric generator with phase change material. Appl. Therm. Eng. 173, 1–15 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115206

    Article  Google Scholar 

  13. C.C. Maduabuchi, C.A. Mgbemene, Numerical study of a phase change material integrated solar thermoelectric generator. J. Electron. Mater. 49, 5917–5936 (2020). https://doi.org/10.1007/s11664-020-08331-3

    Article  Google Scholar 

  14. X. Sui, W. Li, Y. Zhang, Y. Wu, Theoretical and experimental evaluation of a thermoelectric generator using concentration and thermal energy storage. IEEE Access 8, 87820–87828 (2020). https://doi.org/10.1109/ACCESS.2020.2993288

    Article  Google Scholar 

  15. A. Pereira, T. Caroff, G. Lorin, T. Baffie, K. Romanjek, S. Vesin et al., High temperature solar thermoelectric generator—indoor characterization method and modeling. Energy 84, 485–492 (2015). https://doi.org/10.1016/j.energy.2015.03.053

    Article  Google Scholar 

  16. B.S. Yilbas, S.S. Akhtar, A.Z. Sahin, Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations. Energy 114, 52–63 (2016). https://doi.org/10.1016/j.energy.2016.07.168

    Article  Google Scholar 

  17. L. Bakhtiaryfard, Y.S. Chen, Design and analysis of a thermoelectric module to improve the operational life. Adv. Mech. Eng. 7, 152419 (2015). https://doi.org/10.1155/2014/152419

    Article  Google Scholar 

  18. S. Turenne, T.H. Clin, D. Vasilevskiy, R.A. Masut, Finite element thermomechanical modeling of large area thermoelectric generators based on bismuth telluride alloys. 39, 1926–1933 (2010).https://doi.org/10.1007/s11664-009-1049-z

  19. Y. Wu, T. Ming, X. Li, T. Pan, K. Peng, X. Luo, Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator. Energy Convers. Manag. 88, 915–927 (2014). https://doi.org/10.1016/j.enconman.2014.08.069

    Article  Google Scholar 

  20. X.C. Xuan, K.C. Ng, C. Yap, H. Chua, The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics (Guildf) 42, 273–278 (2002). https://doi.org/10.1016/S0011-2275(02)00035-8

    Article  Google Scholar 

  21. H. Lee, in Thermoelectrics (1st Ed., John Wiley & Sons Ltd, West Sussex, UK, 2017)

    Google Scholar 

  22. E. Yin, Q. Li, Y. Xuan, Effect of non-uniform illumination on performance of solar thermoelectric generators. Front. Energy 12, 239–248 (2018). https://doi.org/10.1007/s11708-018-0533-7

  23. H. Lee, The Thomson effect and the ideal equation on thermoelectric coolers. Energy 56, 61–69 (2013). https://doi.org/10.1016/j.energy.2013.04.049

    Article  Google Scholar 

  24. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, vol. 8 (Pergamon Press, Oxford, London, 1960)

    MATH  Google Scholar 

  25. S. Ueda, M. Okada, Y. Nakaue, Transient thermal response of a functionally graded piezoelectric laminate with a crack normal to the bimaterial interface. J. Therm. Stress. 41, 98–118 (2017). https://doi.org/10.1080/01495739.2017.1361801

    Article  Google Scholar 

Download references

Acknowledgements

The first, fifth and sixth authors would like to acknowledge and appreciate the support offered by the Africa Centre of Excellence for Sustainable Power and Energy Development (ACE-SPED), University of Nigeria, Nsukka, towards the successful completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chika Maduabuchi or Mkpamdi Eke .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest Statement

The authors state that they have no known conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maduabuchi, C., Lamba, R., Ozoegwu, C., Njoku, H.O., Eke, M., Ejiogu, E.C. (2022). Electro-thermal and Mechanical Optimization of a Concentrated Solar Thermoelectric Generator. In: Ting, D.SK., Vasel-Be-Hagh, A. (eds) Mitigating Climate Change. TELAC 2021. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-92148-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92148-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92147-7

  • Online ISBN: 978-3-030-92148-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics