Skip to main content

Representative Elementary Volume via Averaged Scalar Minkowski Functionals

Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Representative Elementary Volume (REV) at which the material properties do not vary with change in volume is an important quantity for making measurements or simulations which represent the whole. We discuss the geometrical method to evaluation of REV based on the quantities coming in the Steiner formula from convex geometry. For bodies in three-dimensional space this formula gives us four scalar functionals known as scalar Minkowski functionals. We demonstrate on certain samples that the values of such averaged functionals almost stabilize for cells for which the length of edges are greater than certain threshold value R. Therefore, from this point of view, it is reasonable to consider cubes of volume \(R^3\) as representative elementary volumes for certain physical parameters of porous medium.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963). https://doi.org/10.1016/0022-5096(63)90036-x

    CrossRef  MATH  Google Scholar 

  2. Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44(4), 497–524 (1996). https://doi.org/10.1016/0022-5096(96)00007-5

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Zhang, D., Zhang, R., Chen, S., Soll, W.E.: Pore scale study of flow in porous media: scale dependency, REV, and statistical REV. Geophys. Res. Lett. 27(8), 1195–1198 (2000). https://doi.org/10.1029/1999GL011101

    CrossRef  Google Scholar 

  4. Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45(1), 103–125 (2013). https://doi.org/10.1007/s11004-012-9431-4

    CrossRef  MathSciNet  Google Scholar 

  5. Du, X., Ostoja-Starzewski, M.: On the size of representative volume element for Darcy law in random media. Proc. R. Soc. Lond. A 462, 2949–2963 (2006). https://doi.org/10.1098/rspa.2006.1704

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Sun, W.C., Andrade, J.E., Rudnicki, J.W.: Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability. Int. J. Numer. Meth. Eng. 88, 1260–1279 (2011). https://doi.org/10.1002/nme.3220

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Bear, J.: Dynamics of fluids in porous media. Courier Corporation Chelmsford 120, 162–163 (2013). https://doi.org/10.1097/00010694-197508000-00022

    CrossRef  Google Scholar 

  8. Scholz, C., et al.: Direct relations between morphology and transport in Boolean models. Phys. Rev. E 92, 043023 (2015). https://doi.org/10.1103/PhysRevE.92.043023

    CrossRef  Google Scholar 

  9. Armstrong, R.T., et al.: Porous media characterization using Minkowski functionals: theories, applications and future directions. Transp. Porous Media 130, 305–335 (2018). https://doi.org/10.1007/s11242-01-1201-4

    CrossRef  MathSciNet  Google Scholar 

  10. Slotte, P.A., Berg, C.F., Khanamiri, H.H.: Predicting resistivity and permeability of porous media using Minkowski functionals. Transp. Porous Media 131(2), 705–722 (2019). https://doi.org/10.1007/s11242-019-01363-2

    CrossRef  MathSciNet  Google Scholar 

  11. Novikov, S.P., Taimanov, I.A.: Modern Geometrical Structures and Fields. American Mathematical Society, Providence (2006). https://doi.org/10.1090/gsm/071

  12. Schröder-Turk, G.E., et al.: Minkowski tensors of anisotropic spatial curvature. New J. Phys. 15, 083028 (2013). https://doi.org/10.1088/1367-2630/15/8/083028

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Gilmanov, R.R., Kalyuzhnyuk, A.V., Taimanov, I.A., Yakovlev, A.A.: Topological characteristics of digital oil reservoir models at different scales. In: Proceedings of the 20th Annual Conference of the International Association for Mathematical Geosciences, IAMG 2019, State College, Pennsylvania, USA, 10–16 August 2019, pp. 94–99 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kalyuzhnyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreeva, M.V., Kalyuzhnyuk, A.V., Krutko, V.V., Russkikh, N.E., Taimanov, I.A. (2022). Representative Elementary Volume via Averaged Scalar Minkowski Functionals. In: Indeitsev, D.A., Krivtsov, A.M. (eds) Advanced Problem in Mechanics II. APM 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-92144-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92144-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92143-9

  • Online ISBN: 978-3-030-92144-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics