Skip to main content

Biostatistics and Artificial Intelligence

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 1738 Accesses


Paradigms of data access, data use, and data analysis are shifting. Traditional settings, where each research study focused on data collected by and for a particular investigation, have transitioned to settings where vast amounts of data from past and contemporary sources are becoming readily available for researchers. This transition in data access and availability has motivated the development of new modes of data analysis. In this chapter, we review the traditional and emerging data paradigms and their associated data analysis paradigms with special emphasis on the fields of biostatistics and machine learning. We briefly summarize motivations and questions of interest for both analytic views and point out the important potential for cross fertilization between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567:305–7.

    Article  CAS  PubMed  Google Scholar 

  2. Baraniuk R, Donoho D, Gavish M. The science of deep learning. Proc Natl Acad Sci USA. 2020;117:30029–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barker ED, Roberts S, Walton E. Hidden hypotheses in ‘hypothesis-free’ genome-wide epigenetic associations. Curr Opin Psychol. 2019;27:13–7.

    Article  PubMed  Google Scholar 

  4. Breiman L. Statistical modeling: two cultures. Stat Sci. 2001;16:199–215.

    Article  Google Scholar 

  5. Burkov A. The hundred-page machine learning book. Andriy Burkov. 2019.

    Google Scholar 

  6. Donoho D. 50 years of data science. J Comput Graph Stat. 2017;26:745–66.

    Article  Google Scholar 

  7. Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The extent and consequences of p-hacking in science. PLoS Biol. 2015;13(3):e1002106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li JJ, Tong X. Statistical hypothesis testing versus machine learning binary classification: distinctions and guidelines. Patterns. 2020;1:100115.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shane J. You look like a thing and i love you: how artificial intelligence works and why it’s making the world a Weirder place. New York: Little, Brown, and Company; 2019.

    Google Scholar 

  10. Vollmer S, Mateen BA, Bohner G, Kiràly FJ, Ghani R, Jonsson P, Cumbers S, Jonas A, McAllister KSL, Myles P, Grainger D, Birse M, Branson R, Moons KGM, Collins GS, Ioannidis JPA, Holmes C, Hemingway H. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. Br Med J. 2020;368:169297.

    Article  Google Scholar 

  11. Waller LA, Miller GW. More than manuscripts: reproducibility, rigor, and research productivity in the big data era. Toxicol Sci. 2016;149:275–6.

    Article  CAS  PubMed  Google Scholar 

  12. Waller L, Levi T. Building intuition regarding the statistical behavior of mass medical testing programs. Harvard Data Science Review; 2021. Retrieved from

  13. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appelton G, Azton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roose M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenberg P, Wolstencroft K, Zhao J, Mons B. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoder RM. Someday they’ll get slick Willie Sutton. The Saturday Evening Post. 1951;223(30). Saturday Evening Post Society, Indianapolis.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lance A. Waller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waller, L.A. (2022). Biostatistics and Artificial Intelligence. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics