Abstract
Recent fervor surrounding the use of artificial intelligence (AI) for radiology applications has been driven by the use of convolutional neural networks to greatly improve performance on a variety of imaging tasks. In this chapter, we give an overview of how to build an AI algorithm for imaging purposes with a focus on convolutional neural networks. We will discuss common types of imaging tasks, basic convolutional neural network components, common neural network architectures used for each type of imaging task, loss functions, and basics of training. We also discuss several more advanced concepts of algorithm design in addition to selection of deep learning libraries and hardware.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Also called a feature map.
- 2.
While this is the original formulation of a convolutional layer, in many cases, a padding operation is now performed, for instance, by adding zeros on the edges of the input images, so that the output has the same dimensions as the input.
- 3.
This is known as a regression problem, in which the output is a number rather than a class.
References
Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324. https://doi.org/10.1109/5.726791.
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol. 1. Lake Tahoe, Nevada: Curran Associates Inc.; 2012. p. 1097–105.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A, editors. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. 2014.
He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, editors. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
Xie S, Girshick R, Dollár P, Tu Z, He K, editors. Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. 21–26 July 2017.
Hu J, Shen L, Sun G, editors. Squeeze-and-excitation networks. 2018 IEEE/CVF Conference on computer vision and pattern recognition. 2018. 18–23 June 2018.
Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82. https://doi.org/10.1148/radiol.2017162326. Epub 2017/04/25. PubMed PMID: 28436741.
Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging. 2016;35(5):1207–16. https://doi.org/10.1109/TMI.2016.2535865.
Tang Y-X, Tang Y-B, Peng Y, Yan K, Bagheri M, Redd BA, Brandon CJ, Lu Z, Han M, Xiao J. Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digit Med. 2020;3(1):1–8.
Girshick R, Donahue J, Darrell T, Malik J, editors. Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE conference on computer vision and pattern recognition. 2014. 23–28 June 2014.
Girshick R, editor. Fast R-CNN. 2015 IEEE International conference on computer vision (ICCV). 2015. 7–13 Dec 2015.
Ren S, He K, Girshick R, Sun J, editors. Faster r-cnn: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. 2015;28:1–9.
Redmon J, Divvala S, Girshick R, Farhadi A, editors. You only look once: unified, real-time object detection. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR). 2016. 27–30 June 2016.
Redmon J, Farhadi A, editors. YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR). 2017. 21–26 July 2017.
Redmon J, Farhadi A. Yolov3: an incremental improvement. arXiv preprint arXiv:180402767. 2018.
Santosh KC, Dhar MK, Rajbhandari R, Neupane A, editors. Deep neural network for foreign object detection in chest X-rays. In: 2020 IEEE 33rd International symposium on computer-based medical systems (CBMS). 2020. 28–30 July 2020.
Sindhu Ramachandran S, George J, Skaria S, Varun VV. “Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans,” Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105751I (27 February 2018); https://doi.org/10.1117/12.2293699. Event: SPIE Medical Imaging, 2018, Houston, Texas, United States.
Traoré A, Ly AO, Akhloufi MA, editors. Evaluating deep learning algorithms in pulmonary nodule detection*. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020. 20–24 July 2020.
Cho Y, Lee SM, Cho YH, Lee JG, Park B, Lee G, Kim N, Seo JB. Deep chest X-ray: detection and classification of lesions based on deep convolutional neural networks. Int J Imaging Syst Technol. 2021;31(1):72–81.
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):640–51. https://doi.org/10.1109/TPAMI.2016.2572683.
Long J, Shelhamer E, Darrell T, editors. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
Ronneberger O, Fischer P, Brox T, editors. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer; New York, 2015.
He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: International Conference on Computer Vision (ICCV). 2017.
Tao Q, Yan W, Wang Y, Paiman EH, Shamonin DP, Garg P, Plein S, Huang L, Xia L, Sramko M. Deep learning–based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study. Radiology. 2019;290(1):81–8.
Hahn LD, Mistelbauer G, Higashigaito K, Koci M, Willemink MJ, Sailer AM, Fischbein M, Fleischmann D. CT-based true-and false-lumen segmentation in Type B aortic dissection using machine learning. Radiol Cardiothorac Imaging. 2020;2(3):e190179.
Fahmy AS, Neisius U, Chan RH, Rowin EJ, Manning WJ, Maron MS, Nezafat R. Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: a multicenter multivendor study. Radiology. 2020;294(1):52–60.
Zhang R, Cheng C, Zhao X, Li X. Multiscale mask R-CNN–based lung tumor detection using PET imaging. Mol Imaging. 2019;18:1536012119863531.
Yang Y, Sun J, Li H, Xu Z. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans Pattern Anal Mach Intell. 2020;42(3):521–38.
Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36(12):2524–35. https://doi.org/10.1109/TMI.2017.2715284. Epub 2017/06/18. PubMed PMID: 28622671; PMCID: PMC5727581.
Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017;26(9):4509–22.
Zhao H, Gallo O, Frosio I, Kautz J. Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging. 2017;3(1):47–57. https://doi.org/10.1109/TCI.2016.2644865.
Bahrami N, Retson T, Blansit K, Wang K, Hsiao A. Automated selection of myocardial inversion time with a convolutional neural network: spatial temporal ensemble myocardium inversion network (STEMI-NET). Magn Reson Med. 2019;81(5):3283–91. https://doi.org/10.1002/mrm.27680. Epub 2019/02/05. PubMed PMID: 30714197.
Cui S, Ming S, Lin Y, Chen F, Shen Q, Li H, Chen G, Gong X, Wang H. Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep. 2020;10(1):13657. https://doi.org/10.1038/s41598-020-70629-3. Epub 2020/08/14. PubMed PMID: 32788705; PMCID: PMC7423892.
Tan J, Huo Y, Liang Z, Li L. Expert knowledge-infused deep learning for automatic lung nodule detection. J Xray Sci Technol. 2019;27(1):17–35. https://doi.org/10.3233/XST-180426. Epub 2018/11/20. PubMed PMID: 30452432; PMCID: PMC6453714.
Blansit K, Retson T, Masutani E, Bahrami N, Hsiao A. Deep learning–based prescription of cardiac MRI planes. Radiol Artif Intell. 2019;1(6):e180069. https://doi.org/10.1148/ryai.2019180069.
de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Isgum I. A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal. 2019;52:128–43. https://doi.org/10.1016/j.media.2018.11.010. Epub 2018/12/24. PubMed PMID: 30579222.
Szeliski R. Computer vision: algorithms and applications. Springer Science & Business Media; New York, 2010.
Chollet F. Deep learning with Python. Manning Publications Company; Shelter Island, NY, 2017.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hahn, L., Masutani, E., Hasenstab, K. (2022). How to Build Artificial Intelligence Algorithms for Imaging Applications. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-92087-6_6
Published:
Publisher Name: Humana, Cham
Print ISBN: 978-3-030-92086-9
Online ISBN: 978-3-030-92087-6
eBook Packages: MedicineMedicine (R0)