Skip to main content

Demystifying Artificial Intelligence Technology in Cardiothoracic Imaging: The Essentials

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 1651 Accesses

Abstract

Artificial intelligence is expected to have a significant impact on cardiothoracic imaging. In this chapter, we introduce key concepts that are essential for an understanding of artificial intelligence in radiology. We disambiguate artificial intelligence, machine learning, and deep learning and describe how the combination of data, models, and optimization algorithms can lead to successful machine learning models for a range of tasks. We do this in the context of deep learning, a highly successful subfield of artificial intelligence that is based on artificial neural networks and which has been widely used for the analysis of radiology images. Moreover, we touch upon big data initiatives that could substantially accelerate progress in radiology artificial intelligence. Deep learning methods have led to many exciting breakthroughs in radiological image analysis, and having an understanding of what these methods entail can benefit the interested radiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Leeuwen KG, Schalekamp S, Rutten MJCM, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol [Internet]. 2021 [cited 2021 May 7]:1–8. Available from: https://link.springer.com/10.1007/s00330-021-07892-z.

  2. Huisman M, Ranschaert E, Parker W, Mastrodicasa D, Koci M, Pinto de Santos D, Coppola F, Morozov S, Zins M, Bohyn C, Koç U, Wu J, Veean S, Fleischmann D, Leiner T, Willemink MJ. An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude. Eur Radiol [Internet]. 2021 [cited 2021 May 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/33744991/.

  3. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.

    Google Scholar 

  4. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.

    Google Scholar 

  5. Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J, Išgum I. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging. Elsevier Inc. 2019;12:1549–65.

    Google Scholar 

  6. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, Marwick TH. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review [Internet]. J Am Coll Cardiol. Elsevier USA. 2019 [cited 2021 Mar 10];73:1317–35. Available from: https://doi.org/10.1016/j.jacc.2018.12.054.

  7. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. Language models are few-shot learners [Internet]. NeurIPS. arXiv. 2020 [cited 2021 Mar 10]. Available from: http://arxiv.org/abs/2005.14165.

  8. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529(7587):484–9.

    Article  CAS  PubMed  Google Scholar 

  9. Išgum I, Prokop M, Niemeijer M, Viergever MA, Van Ginneken B. Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging [Internet]. 2012 [cited 2021 May 7];31(12):2322–34. Available from: https://pubmed.ncbi.nlm.nih.gov/22961297/.

  10. Criminisi A, Shotton J, Konukoglu E. Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis. 2011;7:81–227.

    Article  Google Scholar 

  11. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–323.

    Article  Google Scholar 

  12. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit [Internet]. IEEE Computer Society. 2016 [cited 2021 May 8]:770–8. Available from: http://image-net.org/challenges/LSVRC/2015/.

  13. Zheng Q, Delingette H, Fung K, Petersen SE, Ayache N. Pathological cluster identification by unsupervised analysis in 3,822 UK Biobank Cardiac MRIs. Front Cardiovasc Med [Internet]. 2020 [cited 2021 May 7];7:539788. Available from: /pmc/articles/PMC7701336/.

    Google Scholar 

  14. Chuquicusma MJM, Hussein S, Burt J, Bagci U. How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis. In: Proceedings – international symposium on biomedical imaging. IEEE Computer Society; 2018. p. 240–4.

    Google Scholar 

  15. Wolterink JM, Mukhopadhyay A, Leiner T, Vogl TJ, Bucher AM, Išgum I. Generative adversarial networks: a primer for radiologists. RadioGraphics [Internet]. 2021 [cited 2021 Apr 30]:200151. Available from: http://pubs.rsna.org/doi/10.1148/rg.2021200151.

  16. King RD, Orhobor OI, Taylor CC. Cross-validation is safe to use. Nat Mach Intell [Internet]. 2021 [cited 2021 Apr 30];3(4):276. Available from: http://www.nature.com/articles/s42256-021-00332-z.

  17. Srivastava N, Hinton G, Krizhevsky A, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting [Internet]. J Mach Learn Res. 2014 [cited 2021 May 8];15. Available from: http://jmlr.org/papers/v15/srivastava14a.html.

  18. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift [Internet]. PMLR. 2015 [cited 2021 May 8]. Available from: http://proceedings.mlr.press/v37/ioffe15.html.

  19. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM [Internet]. 2017 [cited 2020 Apr 14];60(6):84–90. Available from: http://code.google.com/p/cuda-convnet/.

  20. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, Van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  PubMed  Google Scholar 

  21. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) [Internet]. Cham: Springer; 2015 [cited 2019 Jan 15]. p. 234–41. Available from: http://link.springer.com/10.1007/978-3-319-24574-4_28.

  22. Milletari F, Navab N, Ahmadi S-A. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV) [Internet]. IEEE; 2016 [cited 2019 Feb 17]. p. 565–71. Available from: http://ieeexplore.ieee.org/document/7785132/.

  23. Hering A, van Ginneken B, Heldmann S. mlVIRNET: multilevel variational image registration network. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) [Internet]. Springer; 2019 [cited 2021 Apr 30]. p. 257–65. Available from: https://link.springer.com/chapter/10.1007/978-3-030-32226-7_29.

  24. Grand challenge [Internet]. [cited 2021 Apr 30]. Available from: https://grand-challenge.org/.

  25. Wolterink JM, Leiner T, de Vos BD, Coatrieux J-L, Kelm BM, Kondo S, Salgado RA, Shahzad R, Shu H, Snoeren M, Takx RAP, van Vliet LJ, van Walsum T, Willems TP, Yang G, Zheng Y, Viergever MA, Išgum I. An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orCaScore framework. Med Phys [Internet]. 2016;43(5):2361–73. Available from: http://doi.wiley.com/10.1118/1.4945696.

    Article  CAS  Google Scholar 

  26. Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard C van den, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, Gugten R van der, Heng PA, Jansen B, de Kaste MMJ, Kotov V, Lin JYH, Manders JTMC, Sóñora-Mengana A, García-Naranjo JC, Papavasileiou E, Prokop M, Saletta M, Schaefer-Prokop CM, Scholten ET, Scholten L, Snoeren MM, Torres EL, Vandemeulebroucke J, Walasek N, Zuidhof GCA, Ginneken B van, Jacobs C. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal [Internet]. 2017 [cited 2021 May 7];42:1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/28732268/.

  27. Lambert Z, Petitjean C, Dubray B, Kuan S. SegTHOR: segmentation of thoracic organs at risk in CT images. In: 2020 10th International conference on image processing theory, tools and applications, IPTA 2020. Institute of Electrical and Electronics Engineers Inc.; 2020.

    Google Scholar 

  28. Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P, Arbel T, Bogunovic H, Bradley AP, Carass A, Feldmann C, Frangi AF, Full PM, van Ginneken B, Hanbury A, Honauer K, Kozubek M, Landman BA, März K, Maier O, Maier-Hein K, Menze BH, Müller H, Neher PF, Niessen W, Rajpoot N, Sharp GC, Sirinukunwattana K, Speidel S, Stock C, Stoyanov D, Taha AA, van der Sommen F, Wang C-W, Weber M-A, Zheng G, Jannin P, Kopp-Schneider A. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun [Internet]. 2018 [cited 2019 Jul 25];9(1):5217. Available from: http://www.nature.com/articles/s41467-018-07619-7.

  29. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging [Internet]. 2013 [cited 2021 Apr 30];26(6):1045–57. Available from: https://link.springer.com/article/10.1007/s10278-013-9622-7.

  30. Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, Ourselin S, Sheller M, Summers RM, Trask A, Xu D, Baust M, Cardoso MJ. The future of digital health with federated learning. npj Digit Med [Internet]. 2020 [cited 2021 May 7];3(1):1–7. Available from: https://doi.org/10.1038/s41746-020-00323-1.

  31. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, Aviles-Rivero AI, Etmann C, McCague C, Beer L, Weir-McCall JR, Teng Z, Gkrania-Klotsas E, Ruggiero A, Korhonen A, Jefferson E, Ako E, Langs G, Gozaliasl G, Yang G, Prosch H, Preller J, Stanczuk J, Tang J, Hofmanninger J, Babar J, Sánchez LE, Thillai M, Gonzalez PM, Teare P, Zhu X, Patel M, Cafolla C, Azadbakht H, Jacob J, Lowe J, Zhang K, Bradley K, Wassin M, Holzer M, Ji K, Ortet MD, Ai T, Walton N, Lio P, Stranks S, Shadbahr T, Lin W, Zha Y, Niu Z, Rudd JHF, Sala E, Schönlieb CB. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell [Internet]. 2021 [cited 2021 Apr 30];3(3):199–217. Available from: https://doi.org/10.1038/s42256-021-00307-0.

  32. Garcia B, Cruz S, Nicolás Bossa M, Sölter J, Husch AD. Public Covid-19 X-ray datasets and their impact on model bias – a systematic review of a significant problem. medRxiv [Internet]. 2021 [cited 2021 Apr 30];2021.02.15.21251775. Available from: https://doi.org/10.1101/2021.02.15.21251775.

  33. Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H, Folio LR, Summers RM, Rubin DL, Lungren MP. Preparing medical imaging data for machine learning [Internet]. Radiology. Radiological Society of North America Inc.; 2020 [cited 2021 Apr 30];295:4–15. Available from: https://doi.org/10.1148/radiol.2020192224.

  34. Gotkowski K, Gonzalez C, Bucher A, Mukhopadhyay A. M3d-CAM: a PyTorch library to generate 3D data attention maps for medical deep learning. Inform aktuell [Internet]. 2020 [cited 2021 May 6]:217–22. Available from: http://arxiv.org/abs/2007.00453.

  35. de Vos BD, Wolterink JM, Leiner T, de Jong PA, Lessmann N, Isgum I. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans Med Imaging [Internet]. 2019 [cited 2019 Feb 20]:1–1. Available from: https://ieeexplore.ieee.org/document/8643342/.

  36. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput Methods Prog Biomed. 2020;196:105608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelmer M. Wolterink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolterink, J.M., Mukhopadhyay, A. (2022). Demystifying Artificial Intelligence Technology in Cardiothoracic Imaging: The Essentials. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics